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Two-Dimensional Augmented Cluster Process
John A. Gubner, Member, IEEE, and Kei Hao

Abstract— The IEEE 802.15.3a standards body has developed
a modification of the Saleh–Valenzuela (SV) multipath channel
model as the accepted channel model for ultra-wideband (UWB)
investigations. The SV model is a well-defined simulation model
that is straightforward to implement. However, since the model
as specified is not directly amenable to theoretical analysis, it is
constructed here as a two-dimensional “augmented cluster point
process” that is composed of three statistically independent com-
ponents that can be separately analyzed. For the IEEE 802.15.3a
model, general formulas are derived for means, variances, and
covariances of important channel quantities. In particular, closed-
form expressions in terms of the channel parameters are found
in the following cases: the number of multipath arrivals, the
number of detectable multipath arrivals, the sum of path gains,
the sum of squares of path gains, and the received multipath
waveform. In addition, closed-form expressions are found for the
power-delay profile and the detectable-path profile.

Index Terms— Detectable-path profile, power-delay profile,
Saleh–Valenzuela model, shot noise, ultra-wideband.

I. INTRODUCTION

ULTRA-WIDEBAND (UWB) communication systems

have recently generated intense interest due to their po-

tential for providing pervasive wireless connectivity [11], [14].

This potential is due to the fact that UWB can provide very

high bit rate, low-cost, low-power wireless communication for

a wide variety of systems; e.g., personal computer, TV, VCR,

CD, DVD, MP3 [2], [11]. Current systems, such as those based

on IEEE 802.11b, 11a, or 11g cannot do this because their

power consumption and cost are too high [2].

The Federal Communications Commission has allocated

7.5 GHz of spectrum for unlicensed commercial ultra-

wideband (UWB) communication systems. In order to develop

a common channel model, the IEEE 802.15.3a standards body

[6] considered several possibilities and established a modifica-

tion of the Saleh–Valenzuela (SV) model [12] as the accepted

channel model for UWB investigations [2], [9]. The SV model

is a well-defined simulation model that is straightforward to

implement. Unfortunately, the usual specification of the SV

model is not directly amenable to theoretical analysis. To

address this difficulty, we develop the SV/IEEE 802.15.3a

model as a two-dimensional “augmented cluster point process”

that is composed of three statistically independent compo-

nents that can be separately analyzed. We then exploit this

decomposition to derive closed-form expressions for several

important quantities, including the power-delay profile and the

detectable-path profile.
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Outline of the Paper

Section II introduces the general multipath channel model

with enough notation to summarize our results.

In Section III we construct the SV/IEEE 802.15.3a channel

model as a two-dimensional augmented cluster process.

Section IV establishes our closed-form results based on

more general formulas derived in the Appendixes, and Sec-

tion V contains the conclusion.

II. SUMMARY OF RESULTS

Frequency-selective fading channels are well modeled by

time-varying impulse responses of the form [10]

h(t,τ) =
L(t)

∑
l=1

βl(t)δ (τ − τl(t)),

where t and τ are the observation time and the application time

of the impulse, respectively. The total number of multipath

components is L(t), the {βl(t)} are time-varying gains, and

the {τl(t)} are the path arrival times or delays. For indoor

environments whose structure changes slowly in comparison

with the signaling rate, we use the time-invariant model

h(τ) =
L

∑
l=1

βlδ (τ − τl).

The response of the channel at time t to a transmitted wave-

form ξ is

ρ(t) =
L

∑
l=1

βlξ (t − τl). (1)

Observe that if we put ϕ(τ,β ) := βξ (t−τ), then we can write

the response as
L

∑
l=1

ϕ(τl ,βl). (2)

The sum of a function evaluated at random arguments is called

a shot-noise random variable [5], [8], [13]. In addition to the

channel response, there are many other quantities relevant to

the study of wireless channels that can be expressed in terms

of shot-noise random variables by the appropriate choice of

ϕ .

1) If ϕ(τ,β ) = I[a,b](τ), then (2) counts the number of paths

arriving in the time window [a,b]. Here I is the indicator

function: I[a,b](τ) = 1 if τ ∈ [a,b] and is zero otherwise.

2) If ϕ(τ,β ) = I[a,b](τ)I[1,∞)(β
2/β 2

min), then (2) counts the

number of “detectable” paths that arrive in the time

window [a,b]. Here “detectable” means that the energy

of the path gain is at least β 2
min.



2 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY MAR. 3, 2006

βmin

βmax

a b

B

τ

(b)

β

β1

β2

β3

β4

β5

β6

β7

β8

β9

τ1 τ4τ2 τ3 τ5 τ6 τ7 τ8 τ9

(a)

τ

β

(c)

C

τ

β

Fig. 1. (a) Graph of delays τl and corresponding gains βl . (b) There are 4 paths that arrive during the time interval a ≤ t ≤ b and also have gains lying in
the range βmin ≤ β ≤ βmax. In other words, if B = [a,b]× [βmin,βmax] then N(B) = 4. (c) The number of delay-gain pairs in the set C is N(C) = 3.

3) If ϕ(τ,β ) = β I[a,b](τ), then (2) is equal to the sum of

the path gains that arrive in the time window [a,b].
4) If ϕ(τ,β ) = β 2I[a,b](τ), then (2) is equal to the sum

of the squares of the path gains that arrive in the time

window [a,b].

In the Appendixes, we derive general formulas for the

means, variances, and covariances of shot-noise random vari-

ables when the arrival times and gains are distributed accord-

ing to the IEEE 802.15.3a UWB channel model. In particular,

we mention the following special cases studied in the body of

the paper.

In Section IV-A, we give closed-form expressions for

the mean, variance, and covariance of numbers of paths in

nonoverlapping time windows.

Let Dη(t) denote the expected number of paths in [0, t]
whose energy is at least a fraction η of the expected energy

of the first path. Then the expected number of detectable paths

in a small time window [t, t +∆t] is

Dη(t +∆t)−Dη(t) ≈ D
′
η(t)∆t.

We call D ′
η(t) the detectable-path profile. We give closed-

form expressions for Dη(t), Dη(∞), and D ′
η(t) in Section IV-

B.

In Section IV-C we show that the sum of path gains in

a time window has zero mean, and we give a closed-form

expression for the variance. We also show that the sums of

gains in nonoverlapping time windows are uncorrelated.

Let E (t) denote the expected sum of squares of channel

gains in [0, t]. Then the expected sum of squares of gains in a

small time window [t, t +∆t] is

E (t +∆t)−E (t) ≈ E
′(t)∆t.

Hence, the power-delay profile is E ′(t)/E (∞). We derive

closed-form expressions for E (t), E (∞), and E ′(t) in Sec-

tion IV-D. In particular, the power-delay profile is shown

to consist of two exponentially decaying terms. To estimate

the power-delay profile in a real system, we would probe

the channel with a short pulse ξ (t) and estimate the second

moment of the channel response ρ(t) in (1). We derive simple

expressions for E[ρ(t)2] in Section IV-E. These formulas show

that E[ρ(t)2] consists of two exponentially decaying terms of

the same rates as the power-delay profile, but with weights

that depend in a computable way on the transmitted pulse.

III. THE SV/IEEE 802.15.3A CHANNEL MODEL

Most prior work, e.g., [3], [4], [7], [12], [15], has regarded

the delays τl as a temporal point process and the βl as marks

as shown in Fig. 1(a). However, we have found it more

convenient to regard the pairs (τl ,βl) as random points in

two-dimensional space as shown in Figs. 1(b) and 1(c) (which

contain the same points as Fig. 1(a)). In the general theory of

point processes, one focuses on the random number of points

in different subsets rather than on the random locations of

the points. For example, if B is the rectangular product set

B = [a,b]× [βmin,βmax] shown in Fig. 1(b), then the number

of points in B, denoted by N(B), is 4. In the context of the

multipath channel, N([a,b]× [βmin,βmax]) is the number of

paths that arrive in the time interval a ≤ t ≤ b and whose

corresponding gains satisfy βmin ≤ β ≤ βmax. We can also

count the number of points that lie in nonrectangular sets. For

example, if C is the polygonal set in Fig. 1(c), the number of

points in C is N(C) = 3.

In the general theory of point process, the quantity N(B)
is regarded as a counting measure on the measurable sets B.

Hence, instead of (2), one writes the counting integral
∫ ∫

ϕ(τ,β )N(dτ ×dβ ).

It remains to specify the distribution of the times τl and the

gains βl . For example, Turin et al. [15] considered modeling

the τl as the arrival times of a homogeneous Poisson process.

Unfortunately, this model was not consistent with the cluster-

ing of paths observed in their data [12]. Other researchers have

considered inhomogeneous Poisson arrivals [3] and doubly-

stochastic Poisson arrivals [4]. However, no one has taken

the SV/IEEE 802.15.3a model, which includes the clustering

effect, and expressed it as an augmented cluster process in

two-dimensional space as we do next. Although the model is

not a Poisson process, it is built up from Poisson processes,

and we exploit this fact to derive analytical formulas that can

be evaluated without resorting to simulation.

A. Initial Paths of the Clusters

The ith cluster starts with the path that arrives at time Si0,

i = 0,1,2, . . . (see Fig. 2), where the initial cluster always starts

at the deterministic time S00 ≡ 0. The remaining cluster start

times, Si0, i = 1,2, . . . , are taken to be the occurrence times
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Fig. 2. Multipath arrival times and gains.

of a homogeneous Poisson process of constant intensity C

called the cluster arrival rate. Given the cluster start times

Si0, the corresponding gains Gi0 are taken to be conditionally

independent with each Gi0 depending only on the value of Si0.

Given that Si0 = τ , the conditional density of Gi0 is denoted

by fτ ,τ(·). For i ≥ 1, the gains Gi0 can be considered marks

of the Poisson cluster start times Si0. Such a marked Poisson

process is equivalent to a two-dimensional Poisson process

with intensity function [8, Sec. 5.2]

λ1(τ,γ) := C fτ ,τ(γ), τ ≥ 0,γ ∈ IR. (3)

For future reference, on functions ϕ(τ,γ), we define the linear

functional

Λ̄1ϕ =
∫ ∞

0

∫ ∞

−∞
ϕ(τ,γ)λ1(τ,γ)dγ dτ. (4)

We denote by N1 the Poisson process with intensity function

λ1. Then the point process consisting of the initial paths of all

the clusters is

Nc(B) := IB(S00,G00)+N1(B). (5)

In the construction of cluster processes, Nc is called the cluster

center process [5].

B. Noninitial Paths of the Clusters

Conditional on the cluster start times {Si0, i ≥ 0}, the arrival

times of the noninitial paths in different clusters are modeled

as independent homogeneous Poisson processes. Each of these

Poisson processes has the same constant intensity R called the

ray arrival rate. If the initial path of the ith cluster arrives at

time Si0 = τ with gain Gi0 = γ , and the jth noninitial path

of the ith cluster arrives at time Si j = s ( j ≥ 1), then the

gain of this noninitial path, denoted by Gi j, has conditional

density fτ ,s(·). These gains are conditionally independent and

can be considered marks of the Poisson arrival times of the

noninitial paths in the cluster. As mentioned above, such a

marked Poisson process is equivalent to a two-dimensional

Poisson process. Here the intensity function is1

λr(s,g|τ,γ) := R fτ ,s(g)I[τ ,∞)(s). (6)

1Since the intensity in (6) is zero for s < τ , the Poisson process starts at
time τ . This is in contrast to [2] and [12]. Their ray processes were defined
by taking Poisson processes starting at time zero and then translating them
by the arrival time of the initial path in the cluster. The two constructions are
equivalent provided we adjust the definition of fτ ,s(·). This is done in (10)
where we use s− τ; [2] and [12] would use only s.

Note that λr(s,g|τ,γ) depends on τ but not γ . Let

{Nr(·|τ,γ),τ ≥ 0,γ ∈ IR}
denote a family of independent Poisson processes with corre-

sponding intensity functions λr(·, ·|τ,γ). Since the intensity

functions do not depend on γ , neither do the processes

Nr(·|τ,γ). The process consisting of the noninitial paths of

all the clusters is given by

N∗(B) :=
∫ ∞

0

∫ ∞

−∞
Nr(B|τ,γ)Nc(dτ ×dγ).

Since N∗ results from the placing of independent point process

at each point of Nc, N∗ is called an independent cluster

process [5]. In our case, due to the form of Nc in (5), it is

advantageous to write

N∗(B) = Nr(B|S00,G00)+N×(B), (7)

where

N×(B) :=
∫ ∞

0

∫ ∞

−∞
Nr(B|τ,γ)N1(dτ ×dγ).

First, recalling that S00 ≡ 0 and that Nr(·|τ,γ) does not depend

on γ , we see that

Nr0(B) := Nr(B|S00,G00) (8)

is a Poisson process with intensity R f0,s(s,g)I[0,∞)(s). Second,

conditioned on the points of N1, N× is a sum of independent

Poisson processes and is therefore a Poisson process with

conditional intensity2

∫ ∞

0

∫ ∞

−∞
λr(s,g|τ,γ)N1(dτ ×dγ).

For future reference, we define the linear operator Λ̄r on

functions ϕ(s,g) by

(Λ̄rϕ)(τ,γ) :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)λr(s,g|τ,γ)dgds

= R

∫ ∞

τ

∫ ∞

−∞
ϕ(s,g) fτ ,s(g)dgds. (9)

Since this does not depend on γ , we sometimes write (Λ̄rϕ)(τ)
to denote (9).

C. Assumptions about the Densities of the Gains

Following Saleh and Valenzuela [12, eq. (26)] and Batra et

al. [2, p. 2126], we assume fτ ,s(·) has second moment

Ω0e−τ/τ0e−(s−τ)/s0 , (10)

where Ω0 is a scale factor, and τ0 and s0 are power-delay time

constants. In [12], fτ ,s(·) is taken to be a Rayleigh density.

For the IEEE 802.15.3a model in [2], a {±1}-valued-Bernoul-

li(1/2) mixture of lognormal densities is used. This implies

that under the model in [2], fτ ,s(·) is even and therefore has

zero mean. It also implies that if G has density fτ ,s, then

10log10 G2 is normal with mean

µτ ,s :=
10

ln10

[
lnΩ0 − τ/τ0 − (s− τ)/s0 −

( ln10

10

)2 σ2

2

]
(11)

and variance σ2.

2Thus, N× is a both a cluster process and a doubly-stochastic Poisson
process.
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D. The SV/IEEE 802.15.3a Point Process

The natural way to define the SV/IEEE 802.15.3a UWB

point process N is to write it as the sum of the initial paths

plus the noninitial paths; i.e.,

N(B) := Nc(B)+N∗(B).

Since N results from adding the center process Nc to the cluster

process N∗, we call N an augmented cluster process.

For analysis purposes, it is advantageous to use (5), (7), and

(8) to write

N(B) = IB(S00,G00)+N1(B)+Nr0(B)+N×(B).

Remark: The above decomposition can be regarded as the

sum of the two augmented cluster process

IB(S00,G00)+Nr0(B) and N1(B)+N×(B).

The first process always has exactly one center located at the

point (S00,G00); note that the first component of the point is

deterministic since S00 ≡ 0. In the second process, the centers

are Poisson distributed.

If we put

N⊗(B) := N1(B)+N×(B), (12)

then

N(B) = IB(S00,G00)+Nr0(B)+N⊗(B),

where the three terms on the right are independent. It then

follows that any counting integral with respect to the UWB

channel process such as

Φ :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)N(ds×dg) (13)

can be expressed as the sum of the three independent terms

Φ = ϕ(0,G00)+Φr0 +Φ⊗, (14)

where

Φr0 :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)Nr0(ds×dg) (15)

and

Φ⊗ :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)N⊗(ds×dg). (16)

Line-of-Sight vs. Non-Line-of-Sight Models: The model we

have described above in which the initial path arrives at

time zero is a line-of-sight (LOS) model. In a non-line-of-

sight (NLOS) model, the initial cluster is omitted. For NLOS

models, N(B) = N⊗(B) and Φ = Φ⊗. All of the formulas below

are for LOS models. However, in the figures below pertaining

to the channel models CM1–CM4, only CM1 is LOS; CM2–

CM4 are NLOS, and in computing the curves in these figures,

the unnecessary LOS terms were omitted.

IV. SOME STATISTICS OF THE IEEE 802.15.3A MODEL

A. Mean and Covariance of Number of Paths

Let 0 ≤ a < b ≤ c < d, and put ϕ(s,g) = I[a,b](s) and

ψ(s,g) = I[c,d](s). Let Φ be as in (13) and let Ψ be defined

similarly. Then Φ is the number of multipath arrivals in

the time window [a,b], and Ψ is the number of multipath

arrivals in the time window [c,d]. Using (28), (29), and (31)

in Appendix C and the simplifications discussed there, it can

be shown that

E[Φ] = I[a,b](0)+R(b−a)+C(b−a)

[
1+R

b+a

2

]
.

Since the terms in (14) are independent, with the first being

deterministic, var(Φ) = var(Φr0)+var(Φ⊗), and (30) and (33)

can be used to show that

var(Φ) = R(b−a)+C(b−a)

·
[

1+R
3b−a

2
+R2(b−a)

(
b+2a

3

)]
.

Similarly,

cov(Φ,Ψ) = cov(Φr0,Ψr0)+ cov(Φ⊗,Ψ⊗).

The first term on the right is zero by the paragraph containing

(30). As for cov(Φ⊗,Ψ⊗), which is given by (32), it is argued

at the end of Appendix C that the first, second, and fourth

terms of (32) are zero. Evaluating the remaining terms, it can

be shown that

cov(Φ,Ψ) = CR(b−a)(d − c)[1+R(b+a)/2].

We make the following observations about the above for-

mula for E[Φ]. First, the mean number of paths in [0, t] is

1+Rt +Ct(1+Rt/2), (17)

which grows quadratically in t. Second, the expected number

of paths in a window [t, t +∆t] is

I[t,t+∆t](0)+R∆t +C∆t[1+R(t +∆t/2)],

which grows linearly in the position t of the window.

B. Mean Number of Detectable Paths

Recall that the gain of a path arriving at time s as a part

of a cluster starting at time τ has second moment given by

(10). In particular, the gain of the initial path of the initial

cluster arriving at time zero has second moment Ω0. If we

take ϕ(s,g) = I[0,t](s)I[ηΩ0,∞)(g
2), then Φ in (13) counts the

number of paths arriving in [0, t] that have energy greater than

a fraction η of Ω0. From (28), (29), and (31) in Appendix C,

Dη(t) := E[Φ] = P0,0(G
2 ≥ ηΩ0)

+R

∫ t

0
P0,s(G

2 ≥ ηΩ0)ds

+C

∫ t

0
Pτ ,τ(G

2 ≥ ηΩ0)dτ

+CR

∫ t

0

∫ t

τ
Pτ ,s(G

2 ≥ ηΩ0)dsdτ,

where Pτ ,s indicates that G is generic random variable with

density fτ ,s(·). Since 10log10 G2 is normal with mean µτ ,s in
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Fig. 3. Mean number of detectable paths in [0, t], Dη (t), for η = 0.1 and
channel-model parameters in [2, Table II].

(11) and variance σ2, we can express Dη(t) in closed form

in terms of the standard normal complementary cumulative

distribution function Q(x) := (2π)−1
∫ ∞

x e−t2/2 dt using the

easily-verified identities

H(x) :=
∫ ∞

x
Q(θ)dθ =

e−x2/2

√
2π

− xQ(x),

and

J(x) :=

∫ ∞

x
H(t)dt = 1

2
[Q(x)− xH(x)].

For use later, note that as x → ∞, Q(x), xH(x), and J(x) all

tend to zero. A straightforward but tedious calculation shows

that with

σ∗ := σ
ln10

10
and η∗ := lnη +σ2

∗ /2,

we can write

Dη(t) = Q
(η∗

σ∗

)
+Rs0σ∗

[
H

(η∗
σ∗

)
−H

(η∗+t/s0

σ∗

)]

+Cτ0σ∗
[
H

(η∗
σ∗

)
−H

(η∗+t/τ0

σ∗

)]

+CRs0τ0σ2
∗
[
J
(η∗

σ∗

)
−

{
1− s0

s0−τ0

}

· J
(η∗+t/τ0

σ∗

)
− s0

s0−τ0
J
(η∗+t/s0

σ∗

)]
.

We also have

lim
t→∞

Dη(t) = Q
(η∗

σ∗

)
+Rs0σ∗H

(η∗
σ∗

)
+Cτ0σ∗H

(η∗
σ∗

)

+CRs0τ0σ2
∗ J

(η∗
σ∗

)
.

Graphs of Dη(t) are shown in Fig. 3. Notice that expected

number of detectable paths in [0, t] levels off as intuition would

suggest. This is in stark contrast to the quadratic growth of the

expected total number of paths in (17).

Starting from either the integral formula or the closed-form

expression for Dη(t), we can differentiate and obtain the mean
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Fig. 4. Detectable-path profiles D ′
η (t) corresponding to Fig. 3.

detectable-path profile

D
′
η(t) = RQ

(η∗+t/s0

σ∗

)
+CQ

(η∗+t/τ0

σ∗

)

+CR
s0τ0

s0−τ0
σ∗

[
H

(η∗−t/s0

σ∗

)
−H

(η∗−t/τ0

σ∗

)]
.

Graphs of D ′
η(t) are shown in Fig. 4.

C. Mean and Covariance of Sum of Path Gains in a Time

Window

Let 0 ≤ a < b ≤ c < d as above, and put ϕ(s,g) = gI[a,b](s)
and ψ(s,g) = gI[c,d](s). Then Φ in (13) is the sum of the gains

of the multipath arrivals in the time window [a,b], and Ψ,

defined similarly to Φ, is the sum of the gains of the multipath

arrivals in the time window [c,d]. Using (28), (29), and (31)

along with the fact that fτ ,s(·) has zero mean, it is easy to

show that E[Φ] = 0. Using (30), and again using the fact that

(Λ̄rϕ)(τ) = 0 in (33), we find that

var(Φ) = I[a,b](0)E[G2
00]+R

∫ b

a
E0,s[G

2]ds

+ Λ̄1(ϕ
2)+ Λ̄1(Λ̄r(ϕ

2)), (18)

where G is a generic random variable with density f0,s(·).
On account of (10), (18) is computable in closed form. For

example, the integral term is

Ω0Rs0(e
−a/s0 − e−b/s0),

and

Λ̄1(ϕ
2) = Ω0Cτ0(e

−a/τ0 − e−b/τ0).

A bit more work shows that the last term in (18) can also be

expressed in closed form. It is

Λ̄1(Λ̄r(ϕ
2)) = Ω0CR

[
ζ (a,b,s0)ζ

(
0,a,s0τ0/(s0 − τ0)

)

+ s0ζ (a,b,τ0)

− s0ζ
(
a,b,s0τ0/(s0 − τ0)

)
e−b/s0

]
,

where

ζ (a,b,µ) := µ [e−a/µ − e−b/µ ].



6 SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY MAR. 3, 2006

0 10 20 30 40
0

0.25

0.5

0.75

1

CM1

t (ns)
0 10 20 30 40 50

0

0.25

0.5

0.75

1

CM2

t (ns)

0 25 50 75 100
0

0.25

0.5

0.75

1

CM3

t (ns)
0 30 60 90 120 150

0

0.25

0.5

0.75

1

CM4

t (ns)

Fig. 5. Normalized mean sum of squares of path gains arriving in [0, t],
E (t)/E (∞), for channel-model parameters in [2, Table II].

If we put a = 0 and let b → ∞, we find that

lim
b→∞

var(Φ) = Ω0[1+Rs0 +Cτ0 +CRs0τ0]. (19)

We conclude this subsection by writing

cov(Φ,Ψ) = cov(ϕ(0,G00),ψ(0,G00))+ cov(Φr0,Ψr0)

+ cov(Φ⊗,Ψ⊗).

The first term on the right is zero since the intervals [a,b] and

[c,d] are disjoint. The second term is zero by the paragraph

containing (30). As for cov(Φ⊗,Ψ⊗), it is argued at the end

of Appendix C that the first, second, and fourth terms of (32)

are zero. However, the remaining terms involve Λ̄rψ , which

is zero since Eτ ,s[G] = 0. Thus,

cov(Φ,Ψ) = 0,

and we see that the sums of gains in different time windows

are uncorrelated.

D. Expected Sum of Squares of Path Gains

If we are interested in the sum of the squares of the gains

in an interval, we can take ϕ̃(s,g) = g2I[a,b](s) and define Φ̃
similarly to (13). If we then use the formulas of Appendix C

to compute E[Φ̃], we get exactly (18). This is easy to see as

follows. Let ϕ(s,g) = gI[a,b](s) as in the preceding subsection.

Then observe that since the square of an indicator is equal to

itself, ϕ̃(s,g) = g2I[a,b](s) = ϕ(s,g)2; e.g., Λ̄1(ϕ
2) = Λ̄1ϕ̃ .

It now follows that by taking a = 0 and b = t in (18), we

obtain the expected channel power in [0, t], which we denoted

earlier by E (t). Appealing to the formulas between (18) and

(19) inclusive, and putting ζµ(t) := µ [1−e−t/µ ], we find that

E (t) = Ω0

{
1+Rζs0

(t)+Cζτ0
(t)

+RCs0

[
ζτ0

(t)−ζs0τ0/(s0−τ0)(t)e
−t/s0

]}
,

and

E (∞) = Ω0[1+Rs0 +Cτ0 +CRs0τ0].
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Fig. 6. Power-delay profiles E ′(t)/E (∞) for channel-model parameters in
[2, Table II].

Fig. 5 shows graphs of E (t)/E (∞).
From the formula for E (t), it immediately follows that

E
′(t) = Ω0

{
R[1+Cs0τ0/(s0 − τ0)]e

−t/s0

+C[1−Rs0τ0/(s0 − τ0)]e
−t/τ0

}
, t > 0, (20)

and the power-delay profile E ′(t)/E (∞) is easily computed.

Graphs are shown in Fig. 6.

With (20) it would be easy to use the MATLAB function

fzero to find the delay t at which the power-delay profile

decays to, say −60 dB. However, we have by inspection that

for large t, the decay is dominated by the slower-decaying of

the two terms in (20). If s0 > τ0, the decay will be according

to e−t/s0 ; otherwise the decay will be according to e−t/τ0 . For

example, if τ0 > s0, the approximation

10log10

[
Ω0C[1−Rs0τ0/(s0 − τ0)]e

−t/τ0/E (∞)
]
≈−60

is linear in t and can be trivially solved. An analogous linear

equation holds if s0 > τ0. For the channel parameters in [2,

Table II], the approximate solution agrees with the exact

solution using fzero in at least the first two digits.

E. Mean and Covariance of the UWB Channel Response

If we take ϕ(s,g) = gξ (t1 − s) and ψ(s,g) = gξ (t2 − s),
and if Ψ is defined similarly to Φ in (13), then Φ = ρ(t1)
and Ψ = ρ(t2), where ρ(t) is the UWB waveform seen at the

receiver. Using the formulas in Appendix C, it is not hard to

show that E[ρ(t1)] = 0, and

cov(ρ(t1),ρ(t2))

= E[G2
00]ξ (t1)ξ (t2)

+R

∫ ∞

0
ξ (t1 − s)ξ (t2 − s)E0,s[G

2]ds

+C

∫ ∞

0
ξ (t1 − τ)ξ (t2 − τ)Eτ ,τ [G

2]dτ

+CR

∫ ∞

0

∫ ∞

τ
ξ (t1 − s)ξ (t2 − s)Eτ ,s[G

2]dsdτ.
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Note that this last double integral can be reduced to a single

integral by changing the order of integration and using (10).

In particular, it is straightforward to verify that

E[ρ(t)2] = Ω0

{
ξ (t)2 +RΞs0

(t)+CΞτ0
(t)

+
s0τ0

s0 − τ0
CR

[
Ξs0

(t)−Ξτ0
(t)

]}
, (21)

where

Ξµ(t) :=
∫ ∞

0
ξ (t −θ)2e−θ/µ dθ .

Furthermore, since
∫ ∞
−∞ Ξµ(t)dt = µ‖ξ‖2, where ‖ξ‖2 :=∫ ∞

−∞ ξ (t)2 dt is the energy in the waveform ξ , it follows easily

that the expected total energy in the received waveform ρ is

E

[∫ ∞

−∞
ρ(t)2 dt

]
=

∫ ∞

−∞
E[ρ(t)2]dt

= ‖ξ‖2Ω0

{
1+Rs0 +Cτ0 +CRs0τ0

}
.

Notice that this is proportional to E (∞).
We make the following observations about Ξµ(t). First, it is

the unilateral Laplace transform of ξ (t−·)2 evaluated at 1/µ .

Second, if ξ is a suitably normalized short-duration pulse, then

we can approximate ξ (t−θ)2 by the unit impulse δ (t−θ) and

see that Ξµ(t) ≈ e−t/µ . Substituting this into (21) yields, for

t > 0, E[ρ(t)2] ≈ E ′(t). As we noted below (20), for large t,

E ′(t) decays exponentially fast at a rate determined by the

larger of s0 and τ0. In fact, when ξ is any finite-duration

pulse, the same is true of E[ρ(t)2] even without the impulse

approximation. Suppose that ξ is causal and of duration T .

Then for t > T ,

Ξµ(t) = e−t/µ
∫ T

0
ξ (τ)2eτ/µ dτ

︸ ︷︷ ︸
=:ξµ

,

and we can write

E[ρ(t)2] = Ω0

{
R[1+Cs0τ0/(s0 − τ0)]ξs0

e−t/s0

+C[1−Rs0τ0/(s0 − τ0)]ξτ0
e−t/τ0

}
,

which differs from (20) only by the weights ξs0
and ξτ0

; the

exponential decay rates are not affected. This shows in terms

of the channel parameters the simple relationship between the

power-delay profile that would be determined by probing the

channel with a real pulse ξ and the exact profile obtained with

an ideal impulse.

V. CONCLUSION

We have presented a careful development of the

SV/IEEE 802.15.3a UWB channel model as an augmented

cluster point process that is composed of three statistically

independent components that can be separately analyzed. We

have shown that important channel quantities can be expressed

as shot-noise random variables driven by the augmented

cluster process, and we have derived formulas for means,

variances, and covariances of such shot-noise random vari-

ables. In particular, we have derived closed-form expressions

for the detectable-path profile, the power-delay profile, and

other important channel statistics.

APPENDIX A

POISSON-DRIVEN SHOT-NOISE RANDOM VARIABLES

Let N1(·) be a Poisson process on a space X [8, Ch. 2].3 In

other words, for A ⊂ X, N1(A) denotes the number of points

in A. The random variable N1(A) is Poisson, and we denote

its mean value by

Λ1(A) := E[N1(A)].

When N1(A) is regarded as a function of A, N1(·) is a

nonnegative, integer-valued measure. When Λ1(·) is regarded

as a function of A, we call Λ1(·) the mean measure of N1(·).
If v is a function on X, we define the shot-noise random

variable [8, Ch. 3]

V :=
∫

v(x)N1(dx). (22)

Then

E[V ] =
∫

v(x)Λ1(dx),

where we assume v ∈ L1(Λ1) both here and in (22) in order

that the integrals be well defined. If we also have w ∈ L1(Λ1)
and define

W :=
∫

w(x)N1(dx),

then

E[VW ] =
∫

v(x)w(x)Λ1(dx)

+

[∫
v(x)Λ1(dx)

][∫
w(x)Λ1(dx)

]
,

where we additionally assume v,w ∈ L2(Λ1). We also have the

moment generating function

E[esV ] = exp

[∫
[esv(x)−1]Λ1(dx)

]
,

where s is complex and [esv(·)−1] ∈ L1(Λ1).
In order to write the preceding expectations in a more

compact form, we define the linear functional

Λ̄1v :=
∫

v(x)Λ1(dx) (23)

so that

E[V ] = Λ̄1v, E[VW ] = Λ̄1(v ·w)+ Λ̄1v · Λ̄1w,

and

E[esV ] = exp
[
Λ̄1

(
esv(·)−1

)]
.

APPENDIX B

ANALYSIS OF INTEGRALS WITH RESPECT TO N1(·) AND

N×(·)
Doubly-Poisson Cluster Processes

Let N1(·) be the Poisson process defined in Appendix A with

mean measure Λ1(·) and the linear functional Λ̄1 defined in

(23). Let {Nr(·|x),x ∈ X} be a family of independent Poisson

3For the purposes of this paper, X = [0,∞)× IR, but we state the results in
Appendix A for an arbitrary space X.
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processes on a set Y.4 Assume the Nr(·|x) are independent of

N1(·). Denote the mean measure of Nr(·|x) by Λr(·|x).
We now define the cluster process N×(·) on Y by [5, Ch. 8]

N×(B) :=
∫

Nr(B|x)N1(dx), B ⊂ Y.

Because N1(·) is a Poisson process, N×(·) is called a Poisson

cluster process [5]. Since Nr(·|x) is also Poisson, we call

N×(·) a doubly-Poisson cluster process. If we let N1 denote

the σ -field generated by N1(·), then conditioned on N1, N×(·)
is a sum of independent Poisson processes. Hence, conditioned

on N1, the mean measure of N×(·) is

M×(B) := E[N×(B)|N1] =
∫

Λr(B|x)N1(dx).

In other words, because the Nr(·|x) are independent Poisson

processes that are independent of N1(·), N×(·) is a doubly-

stochastic Poisson process with conditional mean measure

M×(·). Thus, N×(·) is both a cluster process and a doubly-

stochastic Poisson process.

Doubly-Poisson-Cluster-Driven Shot-Noise Random Variables

Let p and q be functions defined on Y, and introduce the

cluster-process-driven shot-noise random variables

P :=
∫

p(y)N×(dy) and Q :=
∫

q(y)N×(dy).

Then

E[P|N1] =
∫

p(y)M×(dy) =
∫ [∫

p(y)Λr(dy|x)
]

N1(dx).

It is now convenient to introduce the operator notation

(Λ̄r p)(x) :=
∫

p(y)Λr(dy|x)

so that we can write

E[P|N1] =
∫

p(y)M×(dy) =
∫

(Λ̄r p)(x)N1(dx), (24)

which we recognize as a Poisson-driven shot-noise random

variable analogous to (22). A similar argument shows that

E[PQ|N1] =
∫

p(y)q(y)M×(dy)

+

[∫
p(y)M×(dy)

][∫
q(y)M×(dy)

]

=
∫

(Λ̄r p ·q)(x)N1(dx) (25)

+

[∫
(Λ̄r p)(x)N1(dx)

][∫
(Λ̄rq)(x)N1(dx)

]
.

Since the integrals in (24) and (25) are Poisson-driven shot-

noise random variables, taking expectations yields

E[P] = Λ̄1(Λ̄r p)

and

E[PQ] = Λ̄1(Λ̄r(p ·q))+ Λ̄1((Λ̄r p) · (Λ̄rq))

+ Λ̄1(Λ̄r p) · Λ̄1(Λ̄rq).

4For the purposes of this paper, Y = X = [0,∞)× IR, but we state the results
in Appendix B for an arbitrary spaces X and Y.

We also need that

E[V P|N1] = VE[P|N1]

= V

∫
(Λ̄r p)(x)N1(dx),

which is a product of Poisson-driven shot-noise random vari-

ables. Hence,

E[V P] = Λ̄1(v · (Λ̄r p))+ Λ̄1(v) · Λ̄1(Λ̄r p).

Example: Using the foregoing formulas, it is easy to see

that

E[V +P] = Λ̄1(v)+ Λ̄1(Λ̄r p), (26)

and

cov(V +P,W +Q) = Λ̄1(v ·w)+ Λ̄1(w · Λ̄r p)

+ Λ̄1(v · Λ̄rq)+ Λ̄1(Λ̄r(p ·q))

+ Λ̄1((Λ̄r p) · (Λ̄rq)). (27)

APPENDIX C

ANALYSIS OF SV/IEEE 802.15.3A COUNTING INTEGRALS

As shown in Section III-D, under the SV/IEEE 802.15.3a

model, a counting integral of the form Φ in (13) can be

written as the sum of the three statistically independent terms

in (14). We now derive general formulas for some statistics

of these terms. Motivated by the specific counting integrals

in Section IV, we restrict attention to integrands ϕ(s,g) of

product form, say ϕ1(s)ϕ2(g).

The First Component

When ϕ(s,g) = ϕ1(s)ϕ2(g),

E[ϕ(0,G00)] = ϕ1(0)E[ϕ2(G00)]. (28)

If ϕ(s) = I[a,b](s) and a > 0, then ϕ1(0) = 0. If ϕ2(g) is equal to

g or g2 and f0,0 is Rayleigh or the IEEE 802.15.3a lognormal

mixture, E[ϕ2(G00)] is available in closed form.

The Second Component

We next consider Φr0 in (15). As noted following (8), Nr0

is a Poisson process with intensity R f0,s(s,g)I[0,∞)(s). Hence,

by the results in Appendix A,

E[Φr0] = (Λ̄rϕ)(0),

where Λ̄r was defined in (9). If ϕ has product form, we can

write

E[Φr0] = (Λ̄rϕ)(0) = R

∫ ∞

0
ϕ1(s)E0,s[ϕ2(G)]ds, (29)

where G is a generic random variable with density f0,s(·). For

ϕ2 a polynomial, the expectation will typically be available in

closed form, usually as an exponential in s (cf. (10)); if we

also have ϕ1(s) = I[a,b](s), then (Λ̄rϕ)(0) can be computed in

closed form.

Analogous to (15), suppose we have another integral Ψr0 of

a function ψ(s,g) also of product form. Then the covariance

between these two Poisson-driven counting integrals is

cov(Φr0,Ψr0) = (Λ̄r(ϕ ·ψ))(0)

= R

∫ ∞

0
ϕ1(s)ψ1(s)E0,s[ϕ2(G)ψ2(G)]ds.
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If ϕ1 and ψ1 are indicator functions of disjoint intervals, then

the covariance is zero. If the intervals are the same, say [a,b],
then

cov(Φr0,Ψr0) = R

∫ b

a
E0,s[ϕ2(G)ψ2(G)]ds. (30)

As noted above, there are interesting cases in which this

expectation and integral will be computable in closed form.

The Third Component

We now focus on the properties of Φ⊗ in (16). On account

of (12), we can write Φ⊗ = V +P, where

V :=
∫ ∞

0

∫ ∞

−∞
ϕ(τ,γ)N1(dτ ×dγ)

and

P :=
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)N×(ds×dg).

Since E[V +P] is given by (26) in Appendix B, we have

E[Φ⊗] = Λ̄1(ϕ)+ Λ̄1(Λ̄rϕ), (31)

where Λ̄1 is the linear functional defined in (4) and Λ̄r is the

linear operator defined in (9).

Now suppose that Ψ⊗ is defined similarly to Φ⊗. Then we

can similarly write Ψ⊗ = W +Q and see that

cov(Φ⊗,Ψ⊗) = cov(V +P,W +Q)

which is given by (27) in Appendix B. Thus,

cov(Φ⊗,Ψ⊗) = Λ̄1(ϕ ·ψ)+ Λ̄1(ψ · Λ̄rϕ)+ Λ̄1(ϕ · Λ̄rψ)

+ Λ̄1(Λ̄r(ϕ ·ψ))+ Λ̄1((Λ̄rϕ) · (Λ̄rψ)).
(32)

We also record the special case,

var(Φ⊗) = Λ̄1(ϕ
2)+2Λ̄1(ϕ · Λ̄rϕ)

+ Λ̄1(Λ̄r(ϕ
2))+ Λ̄1((Λ̄rϕ)2). (33)

Simplifications of (31)–(33): The assumptions of the

IEEE 802.15.3a model allow for several further simplifications

in the formulas for Λ̄1 and Λ̄r. This makes the computation

of (31)–(33) quite tractable.

We first consider Λ̄r. Since λr(s,g|τ,γ) is defined in (6) not

to depend on γ , we write

(Λ̄rϕ)(τ) =
∫ ∞

0

∫ ∞

−∞
ϕ(s,g)λr(s,g|τ,γ)dsdg.

Next, since we will be concerned only with functions ϕ of

product form, e.g., ϕ(s,g) = ϕ1(s)ϕ2(g), we can further exploit

the definition of λr to write

(Λ̄rϕ)(τ) = R

∫ ∞

τ
ϕ1(s)Eτ ,s[ϕ2(G)]ds,

where G is a generic random variable with density fτ ,s men-

tioned in (6). Note that if ϕ1(s) = I[a,b](s) for some 0 ≤ a < b,

then (Λ̄rϕ)(τ) = 0 for τ > b. Also, since G has an even density,

if ϕ2 is odd, (Λ̄rϕ)(τ) = 0.

We next consider Λ̄1. If ψ also has product form, and if we

exploit the definition of λ1 in (3), then

Λ̄1(ϕ ·ψ) = C

∫ ∞

0
ϕ1(τ)ψ1(τ)Eτ ,τ [ϕ2(Γ)ψ2(Γ)]dτ,

where Γ is a generic random variable with density fτ ,τ

mentioned in (3). Note that if 0 ≤ a < b ≤ c < d, and ϕ1(s) =
I[a,b](s) and ψ1(s) = I[c,d](s), then ϕ ·ψ = 0 and the first and

fourth terms in (32) are zero.

We can now write

Λ̄1(ψ · Λ̄rϕ) = C

∫ ∞

0
ψ1(τ)(Λ̄rϕ)(τ)Eτ ,τ [ψ2(Γ)]dτ.

Note that if ϕ1 and ψ1 are indicators of disjoint intervals as

above, then the second term in (32) is zero. Also, since Γ has

an even density, if ψ2 is odd, Λ̄1(ψ · Λ̄rϕ) = 0.

For the calculations we consider here, the expectations Eτ ,τ

and Eτ ,s will always be available in closed form. Hence, the

first term in (31) and in (32) involve at most one integral. The

second term in (31) and the second through fourth terms in

(32) require at most a double integral. The last term in (32)

may require a triple integral, unless ϕ2 = ψ2, in which case at

most a double integral is necessary. In some cases, all terms

can be computed in closed form.
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