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Abstract— Closed-form expressions for the average signal-to-
noise ratio (SNR) and amount of fading are derived for a rake
receiver using maximal-ratio combining on the IEEE 802.15.3a
ultra-wideband (UWB) channel model. It is also shown that
all moments of the SNR and all joint moments of the channel
coefficients can be expressed in closed form.

Index Terms— Amount of fading, channel coefficients, Saleh–
Valenzuela model, signal-to-noise ratio, ultra-wideband.

I. I NTRODUCTION

The ability of ultra-wideband (UWB) systems to resolve a
large number of multipaths suggests that rake receivers can
be used to exploit diversity. However, combining all paths is
prohibitively complex, and evaluating the performance impact
of combining only a subset of paths can be a challenging
problem, especially under IEEE 802.15.3a UWB channel
model.

The IEEE 802.15.3a standards body has developed a mod-
ification of the Saleh–Valenzuela multipath channel model
as the accepted channel model for UWB investigations. The
specification of the Saleh–Valenzuela [11] model and its
IEEE 802.15.3a modification [2], [9] are presented in a way
that makes them easy to simulate, but difficult to analyze
theoretically. However, we have recently shown that if the
UWB channel model is treated as a two-dimensional point
process, then several statistical quantities of the channel can
be computed in closed form [4]. In this paper we study the
performance of rake receivers using maximal-ratio combining
(MRC) on the IEEE 802.15.3a UWB channel. We derive
simple closed-form expressions for the amount of fading (AF)
and the average signal-to-noise ratio (SNR) as a function of
the number of branches combined. In addition, we show that
all moments of the SNR and all joint moments of the channel
coefficients can be expressed in closed form, which will be
useful to researchers seeking to exploit higher-order statistics,
e.g., [15].

The average SNR and the AF are performance measures
that describe the behavior of digital communication systems
in the presence of fading [13]. The average SNR is the simplest
performance measure to compute and requires only the first
moment of the SNR. However, this performance measure
does not capture all the diversity benefit [13]. The AF was
introduced by Charash [3] as a unified measure of the severity
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of fading and has been generalized by Simon and Alouini [13].
The AF requires higher-order statistics of the combiner output
or SNR, and it is shown that it can better capture the diversity
benefit than the average SNR [13]. It is also recently shown
that the AF depends on the branches combined [1], [14]. The
AF has been studied extensively in the literature for several
well-known fading channels and combining techniques, e.g.,
[1], [3], [7], [13], [14]. However, the AF for IEEE 802.15.3a
UWB channel model has not been evaluated.

The paper is organized as follows. In Section II, we derive
the SNR for rake receivers using MRC for the IEEE 802.15.3a
UWB channel model. Section III summarizes our results for
the average SNR and the AF. We show that these quantities
can be computed in closed form using higher-order statistics
of the channel coefficients. Section IV shows that using the
joint moments of the channel coefficients, moments of the
SNR can be computed in closed form. In particular, the mean
and the variance are derived. A numerical example is given in
Section V, and the conclusion is in Section VI.

II. M ATHEMATICAL MODEL

Frequency-selective fading channels are well modeled by
time-varying impulse responses of the form [10]

h(t,τ) = ∑
k

Gk(t)δ (τ −Tk(t)),

where t and τ are the observation time and the application
time of the impulse, respectively. Here theTk(t) are the time-
varying path arrival times and the theGk(t) are the time-
varying path gains. Since we focus on indoor environments
whose structure changes slowly in comparison with the sig-
naling rate, we use the corresponding time-invariant model,1

h(τ) = ∑
k

Gkδ (τ −Tk).

The response of such a channel to a waveformξ (t) is

ξ̂ (t) = ∑
k

Gkξ (t −Tk). (1)

1UWB channels exhibit clustering of the arrival times and attenuation of the
path gains. To capture these features, IEEE 802.15.3a channel model specifies
that paths arrive at timesTk of a kind of cluster process in which the gains
Gk are independent marks [2], [9]. For analysis purposes, we have found it
convenient to view the pairs(Tk,Gk) as points of a two-dimensional point
process [4].



2 SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, AUG. 17, 2005

When transmitting a signalξ (t) of bandwidthW over a
channel with delay spreadTDS, the response of the tapped-
delay-line channel model [10] or virtual-channel model of
Sayeed and Aazhang [12] is given by

ξ̂ (t) ≈
L

∑
l=0

Φl ξ (t − lT∆), (2)

where L ≤ Lmax, Lmax ≈ TDSW is the maximum number of
resolvable delays within the delay spreadTDS, andT∆ := 1/W.
Note that if L < Lmax, then the receiver only captures energy
from the first L + 1 resolvable paths or branches and is
equivalent to the receiver only observing the waveform on
the interval [0,T), whereT := (L + 1/2)T∆. If we let B0 :=
[0,T∆/2) and Bl := [(l −1/2)T∆,(l +1/2)T∆) for l = 1, . . . ,L,
then it can be shown that the virtual channel model (2) is
related to (1) via the channel coefficients [6], [12]

Φl := ∑
k

GkIBl (Tk), (3)

whereIBl (·) is the indicator function of the setBl , i.e.,IBl (t) :=
1 if t ∈ Bl and IBl (t) := 0 if t /∈ Bl . Note that under IEEE
802.15.3a UWB channel model, the number of terms in (3) is
random.

If we also account for additive white Gaussian noise of
power spectral densityσ2

n at the receiver, then any signal
detection is based on the waveformρ(t) = ξ̂ (t)+n(t).

In a binary signaling scheme, there are two possible trans-
mitted signalsξi(t), i = 0,1, and two received signalŝξi(t).
Since theξi(t) are known, conditioned on the channel coef-
ficients Φl , the received signalŝξi(t) are also known. This
optimum receiver using the tapped-delay-line channel model
assuming the channel coefficients can be perfectly estimated
is analogous to a rake receiver using maximal-ratio combining
[10]. Hence, the conditional probability of error is2

Q
(

√

d2/4σ2
n

)

, (4)

whereQ(x) :=
∫ ∞

x e−t2/2/
√

2π dt is the standard normal com-
plementary cumulative distribution function, andd is the
distance between the received waveformsξ̂1 and ξ̂0. If we
put ξ̂∆(t) := ξ̂1(t)− ξ̂0(t), then d2 =

∫

∣

∣ξ̂∆(t)
∣

∣

2
dt. If we put

ξ∆(t) := ξ1(t)−ξ0(t), we have

d2 =
L

∑
l=0

L

∑
m=0

Φl ΦmR((m− l)∆),

whereR(t) :=
∫

ξ∆(θ + t)ξ∆(θ)dθ is the time autocorrelation
function ofξ∆(t). If we assume that the duration of the pulses
ξ∆(t) is less thanT∆, thenR((m− l)T∆) = 0 for m 6= l , and

d2 = R(0)
L

∑
l=0

Φ2
l .

Substituting this into (4) and taking the expectation, we obtain
the average bit error probabilityPe = E[Q(

√
Λ)], where

Λ :=
R(0)∑L

l=0 Φ2
l

4σ2
n

is the output SNR.

2In the IEEE 802.15.3a model, the gainsGk are real as is the additive noise.

III. SUMMARY OF RESULTS

The SNRΛ is proportional to

HL :=
L

∑
l=0

Φ2
l .

It is shown in [4] that theΦl are zero mean and uncorrelated,
but are not statistically independent and significantly different
from Gaussian distributions [5]. The random variableHL is
the sum ofL+1 random variables with different distributions.
Because theΦl are not statistically independent, the distribu-
tion of HL is very difficult to evaluate analytically or compute
numerically. Hence, we concentrate on performance measures
such as the average output SNR, the AF, and the moments of
the SNR at the output of the combiner as a function of number
of branches combined.

A. Average SNR

The average SNR as a function of the number of branches
combined is given by

ASNR(L) := E[Λ] =
R(0)E[HL]

4σ2
n

.

It is shown in Theorem 1 in Section IV that

E[HL] = Ω0{1+Rβ̄ (T,s0)+Cβ̄ (T,τ0)+RC[s0β̄ (T,τ0)

−s0β̄ (T,s0τ0/(s0− τ0))e
−T/s0]}, (5)

whereT = (L+1/2)T∆, and

β̄ (T,µ) :=
∫ T

0
e−t/µdt = µ [1−e−T/µ ], (6)

and the constantsR (ray arrival rate),C (cluster arrival rate),
τ0 (cluster decay factor),s0 (ray decay factor), andΩ0 are
the channel parameters of the IEEE 802.15.3a UWB channel
model. The number of branches combined isL+1, andT∆ is
defined following (2).

B. Amount of Fading (AF)

The AF as a function of the number of branches combined
is defined as [13]

AF(L) :=
var(Λ)

(E[Λ])2 =
var(HL)

(E[HL])2 . (7)

Since HL is the sum of squared channel coefficients, its
variance involves higher-order moments of the channel coef-
ficients. Section IV shows that the variance can be computed
using fourth moments and the correlation of the second
moments of the channel coefficients. Later it is shown in
Sections C and D of the Appendix that the moments and the
correlations are in closed form. Hence, the AF as a function of
the number of branches combined can be expressed in closed
form.
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IV. M OMENTS OF THESNR

The nth moment of the SNR is given by

E[Λn] =
R(0)n

E[Hn
L ]

(4σ2
n )n .

It is shown in Section IV-C that thenth moment ofHL involves
the joint moments of the channel coefficients. For this reason,
first it is necessary to derive the joint characteristic function of
the channel coefficients in Section B of the Appendix. Then
by computing derivatives of the joint characteristic function,
the joint moments of the channel coefficients are shown to be
in closed form in Section C of the Appendix. Thus, moments
of the SNR can be expressed in closed form.

A. The Mean of HL

The mean ofHL is given by

E[HL] =
L

∑
l=0

E[Φ2
l ].

It is shown in [4] that

E[Φ2
l ] = Ω0{IBl (0)+Rβ (Bl ,s0)+Cβ (Bl ,τ0)

+RC[β (Bl ,s0)β̄ (al ,s0τ0/(s0− τ0))+s0β (Bl ,τ0)

−s0β (Bl ,s0τ0/(s0− τ0))e
−b/s0]}, (8)

whereal is the left-hand end point of the intervalBl , β̄ (·, ·)
is defined in (6), and for any setB and µ > 0,

β (B,µ) :=
∫

B
e−t/µdt. (9)

If B is an interval[a,b), then β (B,µ) = µ [e−a/µ −e−b/µ ].
Also, β ([0,T),µ) = β̄ (T,µ). Since all ourBl defined follow-
ing (2) are intervals, we have (8) in closed form.

Theorem 1:The expectationE[HL] is given by (5).
Proof: Suppose we divide the interval[0,T) into the

nonoverlapping intervals as done following (2). Each channel
coefficient,Φl , is defined as the sum of the path gains in the
corresponding intervalBl . Since it is shown in [4] that theΦl

are zero mean and uncorrelated,E[Φ2
l ] = var(Φl ), and

L

∑
l=0

E[Φ2
l ] =

L

∑
l=0

var(Φl ) = var

( L

∑
l=0

Φl

)

= var

(

∑
k

GkI[0,T)(Tk)
)

, by (3).

This implies thatE[HL] can be computed using the right hand
side of (8) by replacingBl with [0,T) andal with 0.

It is also shown in [4] that

lim
T→∞

var

(

∑
k

GkI[0,T)(Tk)

)

= Ω0(1+Rs0)(1+Cτ0),

which is the maximum value ofE[HL].

B. The Variance of HL

Using the formulavar(HL) = E[H2
L ]− (E[HL])

2, we have

var(HL) =
L

∑
i=0

E[Φ4
i ]+

L

∑
i=0

L

∑
j=0, j 6=i

E[Φ2
i Φ2

j ]− (E[HL])
2. (10)

For the IEEE 802.15.3a channel model, it is possible in prin-
ciple to express all joint momentsE[Φn0

0 Φn1
1 · · ·ΦnL

L ] in closed
form; this is shown in Section C of the Appendix. For the
moments appearing in (10), explicit closed-form expressions
are given in Section D of the Appendix. Hence,var(HL) can
be computed in closed form.

C. Higher-Order Moments of HL

By the multinomial theorem,

E[Hn
L ] = E

[( L

∑
l=0

Φ2
l

)n]

= ∑ n!
n0!n1! · · ·nL!

E

[

Φ2n0
0 Φ2n1

1 · · ·Φ2nL
L

]

,

where the sum is taken over all multi-indicesn1, . . . ,nk such
that n1 +n2 + · · ·+nk = n. As just mentioned above, the joint
moments in this last expectation can be computed in closed
form, although it would be tedious without a computer for
n > 2.

V. NUMERICAL RESULTS/EXAMPLE

As a check of our work, we compare the mean and variance
using the closed-form expressions (5) and (10) with Monte–
Carlo estimates by simulating 30,000 realizations of the IEEE
802.15.3a UWB channel model. For the numerical example,
we consider the channel model CM3 in [2, Table II], namely

Ω0 = 1/[(1+Rs0)(1+Cτ0)], C = 0.0667, R= 2.1,

τ0 = 14, s0 = 7.9, σ2 = σ2
1 +σ2

2 , σ1 = σ2 = 3.3941.

All times are in nanoseconds.
The examples use the time resolutionT∆ = 1 ns. Fig. 1

shows that the mean (top) and variance (bottom) computed
using closed-form expressions and estimates by simulation
are very close. Since the mean is normalized to 1, the mean
can be used to represent the percentage of expected energy
captured by the rake receiver using maximal-ratio combining
as a function ofL. Note that the average SNR is the same
curve as a function ofL multiplied by a scale factor.

Fig. 2 shows the AF as a function of the number of branches
combined computed using (7). In this channel model, the
combiner efficiently mitigates the fading for the first branches
combined and the AF remains almost constant beyond 40
branches combined.

VI. CONCLUSIONS

We have derived closed-form expressions for the average
SNR and AF as a function of the number of branches com-
bined by rake receivers using MRC on the IEEE 802.15.3a
UWB channel model. The AF can be used to evaluate how
effectively rake receivers using MRC mitigate fading under
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Fig. 1. E[HL] (top) andvar(HL) (bottom) as a function of branches combined.
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Fig. 2. Amount of fading as a function of the number of branches combined.

the IEEE 802.15.3a UWB channel model. These closed-form
expressions quantify the effects of the number of branches
combined on these performance measures, and ultimately they
will be of great benefit to researchers in the analysis and design
of UWB systems. Since the AF requires higher-order statistics
of the SNR, it was necessary to derive the joint characteristic
function of the channel coefficients. By computing derivatives
of the characteristic function, we have also derived closed-
form expressions for joint moments of the channel coefficients.
Furthermore, we have shown that moments of the SNR can
be computed in closed form. Our results should be useful
to researchers seeking to exploit higher-order statisticsof the
channel coefficients as well as the SNR.

APPENDIX

A. Definitions and Notation

In [4] it is shown that the pairs(Tk,Gk) can be regarded as
points of a two-dimensional point process. The key idea is the
use of thecounting integral

∫ ∞

0

∫ ∞

−∞
ϕ(s,g)N(ds×dg) := ∑

k

ϕ(Tk,Gk), (11)

whereN(·) is thecounting measureon [0,∞)× (−∞,∞) that
puts a unit mass at each point(Tk,Gk), where the arrival times
Tk and the path gainsGk are specified by the IEEE 802.15.3a
model. Note that if we takeϕ(s,g) = ϕl (s,g) with ϕl (s,g) =
gIBl (s), thenΦl in (3) is a special case of the (11).

Let fτ ,s(·) denote the density of a path gain arriving at time
s that is part of a cluster that started at timeτ. Following Saleh
and Valenzuela [11, eq. (26)] and Batraet al. [2, p. 2126], we
assumefτ ,s(·) has second moment3

Ω0e−τ/τ0e−(s−τ)/s0, (12)

whereτ0 and s0 are power-delay time constants andΩ0 is a
scale factor. For the IEEE 802.15.3a model in [2], a{±1}-
valued-Bernoulli(1/2) mixture of lognormal densities is used.
This implies that ifG has densityfτ ,s(·), then 20log10|G| is
normal with mean

µτ ,s :=
10

ln10

[

lnΩ0− τ/τ0− (s− τ)/s0−
( ln10

10

)2 σ2

2

]

(13)

and varianceσ2. The lognormal mixture density and the
lognormal density are related by

fτ ,s(x) = 1
2[ f|G|,τ ,s(x)+ f|G|,τ ,s(−x)], (14)

where f|G|,τ ,s(·) is the lognormal density with parametersµτ ,s

and σ . The characteristic function of the lognormal mixture
random variable is

Lτ ,s(ν) := Eτ ,s[e
jνG] =

∫ ∞

−∞
ejνg fτ ,s(g)dg.

We also need the following notation. LetB = [a,b),

ψ(τ,ν , [a,b)) :=

{
∫ b

max(a,τ) 1−Lτ ,s(ν)ds, τ ≤ b,

0, τ > b.
(15)

and

J(ν , [a,b)) :=
∫ a

0
1−e−Rψ(τ ,ν ,[a,b)) dτ

+

∫ b

a
1−Lτ ,τ(ν)e−Rψ(τ ,ν ,[a,b)) dτ. (16)

To simplify the notation, we defineψl (τ,ν) := ψ(τ,ν ,Bl ) and
Jl (ν) := J(ν ,Bl ), whereBl is defined in Section II.

B. The Joint Characteristic Function

From the definition of the channel coefficients, we can write
the joint characteristic function as

Ψ(ν0,ν1, . . . ,νL) = E[ej ∑L
l=0 νiΦl ].

It is shown in [4] that a counting integral of the form (11) can
be written as the sum of the three statistically independent
terms ϕ(0,G0) + Φr0 + Φ⊗. Therefore, each channel coeffi-
cient defined in (3) is composed of either two or three terms,
i.e.,

Φ0 = ϕ0(0,G0)+Φ0,r0 +Φ0,⊗ = G0 +Φ0,r0 +Φ0,⊗,

whereG0 is a lognormal mixture random variable, and forl >
0, Φl = Φl ,r0+Φl ,⊗. By independence, the joint characteristic
function can be written as three factors,

Ψ(ν0, . . . ,νL) = E[ejν0G0]E

[ L

∏
l=0

ejνl Φl ,r0

]

E

[ L

∏
l=0

ejνl Φl ,⊗

]

.

3This is in contrast to [2] and [11]. Their ray processes were defined by
taking Poisson processes starting at time zero and then translating them by
the arrival time of the initial path in the cluster. The two constructions are
equivalent provided we adjust the definition offτ ,s(·). This is done in (12)
where we uses− τ; [2] and [11] would use onlys.
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The first factor is simplyL0,0(ν0) and it is shown in [5] that
it can be evaluated numerically. The second factor involvesa
family of Φl ,r0. As shown in [4], eachΦl ,r0 is a shot-noise
random variable driven by a two-dimensional Poisson process
with intensity function (as a function of(s,g))

λr(s,g|0,G0) = R f0,s(g), s≥ 0, g∈ IR.

Hence, we have from [8, Ch. 3] that each factor is given
by E[exp( jνl Φl ,r0)] = exp(−Rψl (0,νl )). Since the channel
coefficients lie in disjoint sets, they are independent, thus
the second factor is simply the product of these factors, i.e.,
exp

[

−R∑L
l=0 ψl (0,νl )

]

. The third factor involves theΦl ,⊗. As
noted in [4, Appendix C],Φl ,⊗ can be written in the form
Φl ,⊗ = Vl +Pl , where, analogous to (11),

Vl :=
∫ ∞

0

∫ ∞

−∞
ϕl (τ,γ)N1(dτ ×dγ)

and

Pl :=
∫ ∞

0

∫ ∞

−∞
ϕl (s,g)N×(ds×dg),

whereN1 is the Poisson process with intensity function

λ1(τ,γ) := C fτ ,τ(γ), τ ≥ 0, γ ∈ IR.

and conditioned on the realization ofN1, N× is a Poisson
process with intensity (cf. [4, Appendix B])

m×(s,g) =
∫ ∞

0

∫ ∞

−∞
λr(s,g|τ,γ)N1(dτ ×dγ).

The intensity functionλr(s,g|τ,γ) in this case is given by

λr(s,g|τ,γ) := R fτ ,s(g)I[τ ,∞)(s),

which λr(s,g|τ,γ) depends onτ but not γ. Conditioned on
the realization ofN1, the definition ofPl means thatPl has the
conditional characteristic function

E[ejνl Pl |N1(·)] = exp

[

−R
∫ ∞

0

∫ ∞

−∞
ψl (τ,νl )N1(dτ ×dγ)

]

,

where the last step uses the fact thatϕl (s,g) = gIBl (s). Let us
denote this last double integral byαl (νl ). Observe thatαl (νl )
looks just likeVl above, except with a different integrand. Then

E

[ L

∏
l=0

ejνl Φl ,⊗

]

= E

[

exp

{ L

∑
l=0

jνlVl −Rαl (νl )

}]

= exp(−CJ̄(ν0, . . . ,νL)), (17)

where

J̄(ν0, . . . ,νL) =

∫ ∞

0

∫ ∞

−∞

[

1−
L

∑
l=0

kl (τ,γ,νl )

]

fτ ,τ(γ)dγ dτ,

andkl (τ,γ,νl ) := jνl γIBl (τ)−Rψl (τ,νl ). The last step in (17)
follows from the fact thatN1 is a Poisson process with intensity
λ1(τ,γ) [8, Ch.3].

C. The Statistics of the Channel Coefficients

1) Moments of the Channel Coefficients:We show that
moments of the channel coefficients can be computed in closed
form. We use this result to computevar(HL) in Section D.

To derive the moments of the channel coefficients, we use
derivatives of the characteristic function of the channel coeffi-
cients. The characteristic function of the channel coefficientΦl

is given byΨΦl (ν) = Ψ(0, . . . ,ν , . . . ,0), where only argument
l +1 of the joint characteristic function is not zero. Hence,

ΨΦ0(ν) = L0,0(ν)e−Rψ0(0,ν)e−CJ0(ν), (18)

and

ΨΦl (ν) = e−Rψl (0,ν)e−CJl (ν), l > 0. (19)

It is shown in [5] that the characteristic functions of the chan-
nel coefficients are even functions ofν , and the probability
density functions exist and are also even functions. Hence,
odd moments of the channel coefficients are zero. The even
moments are

E[Φk
l ] = j−kΨ(k)

Φl
(ν)|ν=0, k even,

whereΨ(k)
Φl

(ν) is thekth derivative of the characteristic func-
tion of Φl .

To compute thekth derivative of the characteristic function,
we apply Leibniz’s rule,

( f g)(k)(x) =
k

∑
l=0

(

k
l

)

f (k)(x)g(k−l)(x).

Leibniz’s rule implies that the derivatives of the product are in
closed form if derivatives off (x) andg(x) are in closed form.
Thus, we need to show each factor in (18) and (19) evaluated
at ν = 0 is in closed form.

Since moments of the lognormal random variable are in
closed form, it is easy to show that moments of the lognormal
mixture random variable are also in closed form. Because the
density of the lognormal mixture random variable given by
(14) is an even function, odd moments are zero and even
moments are given by

j−m
L

(m)
τ ,s (0) = exp

[

mµτ ,s ln(10)
20

+
m2σ2 ln(10)2

2(202)

]

, (20)

for m even, whereµτ ,s is given by (13).
The factors in (18) and (19) are exponential functions

(exceptL0,0(ν)). It is easy to see that thekth derivative of
these factors involve the functions themselves and derivatives
of the exponents,ψl (0,ν) and Jl (ν). One can show that
e−Rψl (0,0) = 1 ande−CJl (0) = 1. Thus, the derivatives of these
factors evaluated atν = 0 are essentially derivatives ofψl (0,ν)
andJl (ν) evaluated atν = 0.

The function ψl (τ,ν) given by (15) is an integral of
the characteristic function of the lognormal mixture random
variable with respect to the variables. Becauseµτ ,s is an affine
function of the variables, with a bit of work, one can show
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that for k even

ψ(k)
l (τ,0) =































− jkKΩ(k)β (Bl ,2s0/k)
·exp[−kτ(s0− τ0)/(2s0τ0)], τ < al

− jkKΩ(k)2s0exp[−kτ/(2τ0)]/k
+ jkKΩ(k)2s0exp[−bl k/(2s0)]/k
·exp[−kτ(s0− τ0)/(2s0τ0)], al < τ < bl

0, τ > bl
(21)

where

KΩ(k) = Ωk/2
0 exp[σ2 ln2(10)(k2/2−k)/202], (22)

β (·, ·) is given by (9) andBl := [al ,bl ). It is straightforward
to see thatψ(k)

l (τ,ν)|ν=0 = 0 if k is odd.
The function Jl (ν) in (16) involves two integrals. The

derivatives of the first integral with respect toν and evaluated
at ν = 0 are integrals of derivatives ofe−Rψl (τ ,ν)|ν=0, which
we have already shown are in closed form given by (21). Since
the integrand is an exponential function ofτ, the first integral
is in closed form. The integrand of the second integral is in
product form, therefore we can apply Leibniz’s rule again.
After applying Leibniz’s rule, each term evaluated atν = 0
is the product of two exponential functions given by (20) and
(21). Since the integrand is an exponential function ofτ, the
second integral is also in closed form.

At first glance, it seems that many terms need to be
computed to evaluate the moments. However, we show that
odd derivatives of the factors in (18) and (19) evaluated at
ν = 0 are zero. From (20), it is clear that odd derivatives of
the factorL0,0(ν)|ν=0 are zero.

Theorem 2:The odd derivatives ofe−Rψl (τ ,ν) and e−CJl (ν)

evaluated atν = 0 are zero.
Proof: This can be proved by induction. Letχτ(ν) :=

e−Rψl (τ ,ν). It is easy to show the first derivative ofχτ(ν) at
the origin is zero. Now suppose thatn is an odd number and
suppose that all odd derivatives from the first derivative tothe
nth derivative evaluated atν = 0 are zero. Thenn+2 is an odd
number and applying Leibniz’s rule, the(n+ 2)th derivative
is given by

χ(n+2)
τ (ν) =

n+1

∑
i=0

(

n+1
i

)

χ(n+1−i)
τ (ν)(−Rψ(i+1)

l (τ,ν)).

If i +1 is odd, thenψ(i+1)
l (τ,0) is zero. If i +1 is even, then

i is odd andψ(i+1)
l (τ,0) is not zero. Sincei is odd andn+1

is even (becausen is odd), thenn+ 1− i is odd. Therefore,
χ(n+1−i)

τ (0) is zero by the induction hypothesis. Hence, the
(n+ 2)th derivative ofχτ(ν) evaluated atν = 0 is a sum of
zeros. The same proof applies toe−CJl (ν).

Thus, all moments of theΦl are in closed form.
2) Joint Moment of the Channel Coefficients:Generalizing

the ideas from the previous subsection, the joint moment of the
channel coefficients is computed using the joint characteristic
function of the channel coefficients, i.e.,

E[Φn0
0 Φn1

1 · · ·ΦnL
L ] =

∂ nΨ(ν0, . . .νL)

jn∂ n0ν0 · · ·∂ nLνL

∣

∣

∣

∣

ν0=0,...,νL=0
, (23)

wheren = n0 +n1 + · · ·+nL. To compute the derivatives, we
apply the generalized Leibniz rule. It says that iff1, f2, . . . , fr

are functions that aren times differentiable, then

dn

dtn

r

∏
i=1

fi(t) = ∑ n!
n1!n2! · · ·nr !

r

∏
i=1

dni

dtni
fi(t)

where the sum is taken over all multi-indicesn1, . . . ,nr such
that n1 +n2 + · · ·+nr = n.

Let χl (ν) := e−Rψl (0,ν). It can be shown that

Ψ(ν0, . . . ,νL) = L0,0(ν0)χ0(ν0) · · ·χL(νL)

·κJ(ν0, . . . ,νL), (24)

where κJ(ν0, . . . ,νL) = exp(−CJc(ν0, . . . ,νL)). The function
Jc(ν0, . . . ,νL) can be written as

Jc(ν0, . . . ,νL) =
∫ ∞

0

∫ ∞

−∞
(1−ekc(ν0,...,νL,τ ,γ)) fτ ,τ(γ)dγdτ,

where

kc(ν0, . . . ,νL,τ,γ) =
L

∑
i=0

jνiγIBi (τ)−Rψi(τ,νi).

To compute (23), we apply the generalized Leibniz’s rule.
We have shown that the firstL + 1 factors of (24) evaluated
at νi = 0 for i = 0, . . . ,L are in closed form. To show that the
derivatives ofκJ(ν0, . . . ,ν j) evaluated atνi = 0 for i = 0, . . . ,L
are also in closed form, we use the same technique discussed
earlier, and we use Leibniz’s rule one more time. Hence, the
joint moments of the channel coefficients can be computed in
closed form.

As a special case, the correlation of higher moments is
defined asE[Φp

i Φq
j ] for any positive integersp and q. It can

be computed by settingni = p, n j = q and nk = 0 for all k
with k 6= i andk 6= j.

D. The Variance of HL
We introduce some notation to simplify the closed-form

expression,βl (u) := β (Bl ,u), β̂l := β (Bl ,s0τ0/(2s0 − τ0)),
β̃l := β (Bl ,s0τ0/(2(s0−τ0)), andβ̄l := β̄ (al ,s0τ0/(2(s0−τ0)),
whereβ̄ (·, ·) andβ (·, ·) are given by (6) and (9) respectively.

It is shown in Section C of the Appendix that the moments
of Φl are in closed form. The fourth moment ofΦl for l 6= 0
is given by,

3R2Ω2
0β 2

l (s0)−6RCΩ2
0βl (s0)ηl +3C2Ω2

0η2
l

+RKΩ(4)βl (s0/2)−Cη̄l (25)

whereKΩ(4) is given by (22),

ηl = −βl (τ0)−R[βl (s0)β̄ (al ,s0τ0/(s0− τ0))

−s0(βl (τ0)−e−bl /s0βl (s0τ0/(s0− τ0)))],

and

η̄l = −KΩ(4)βl (τ0/2)−6RΩ2
0[s0(βl (τ0/2)−e−bl /s0β̂l ]

−3R2Ω2
0[β 2

l (s0)β̄l +s2
0(βl (τ0/2)−2e−bl /s0β̂l

+e−2bl /s0β̃l ]−RKΩ(4)[βl (s0/2)β̄l −s0/2(βl (τ0/2)

−e−2bl /s0β̃l ].

To compute the fourth moment ofΦ0, we use the same
expression (25) by replacingBl with B0 and adding the
following two terms,KΩ(4)+6Ω2

0[Rβ0(s0)−Cη0].
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The correlation of the second moment (fori 6= 0 and j 6= 0)
can be computed as

E[Φ2
i Φ2

j ] =
∂ 4ΨΦi ,Φ j (νi ,ν j)

j4∂ 2νi∂ 2ν j

∣

∣

∣

∣

νi=0,ν j=0

where ΨΦi ,Φ j (νi ,ν j) is the joint characteristic function of
channel coefficientsΦi and Φ j . With a bit of work, it can
be shown thatE[Φ2

i Φ2
j ] is given by

Ω2
0[R

2βi(s0)β j(s0)−RCβi(s0)η j −RCβ j(s0)ηi +C2ηiη j

+Rβ j(s0)[Cβ̂i +Rβi(s0)β̄i +RCs0(β̂i −Rβ̃ie−bi/s0)]],

whereBi := [ai ,bi) and B j = [a j ,b j) with ai < bi ≤ a j < b j .
In the caseE[Φ2

0Φ2
j ] for j 6= 0, it is the same expression by

replacingBi with B0, keeping the sameB j , and adding the
following termsΩ2

0[Rβ j(s0)−Cη j ].
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