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Performance Measures and Statistical Quantities of
Rake Receivers Using Maximal-Ratio Combining
on the IEEE 802.15.3a UWB Channel Model

Kei Hao and John A. Gubneklember IEEE

Abstract— Closed-form expressions for the average signal-to- of fading and has been generalized by Simon and Alouini [13].
noise ratio (SNR) and amount of fading are derived for a rake The AF requires higher-order statistics of the combinepout
receive_r using maximal-ratio combining on .the IEEE 802.15.3a SNR, and it is shown that it can better capture the diversit
ultra-wideband (UWB) channel model. It is also shown that benefit than the average SNR [13]. It is also recently shown
all moments of the SNR and all joint moments of the channel : .
coefficients can be expressed in closed form. that the AF depends on the branches combined [1], [14] The
AF has been studied extensively in the literature for sévera
well-known fading channels and combining techniques,, e.g.
[1], [3], [7], [13], [14]. However, the AF for IEEE 802.15.3a
UWB channel model has not been evaluated.

|. INTRODUCTION The paper is organized as follows. In Section II, we derive

The ability of ultra-wideband (UWB) systems to resolve ghe SNR for rake receivers using MRC for the IEEE 802.15.3a
large number of multipaths suggests that rake receivers G@WB channel model. Section Ill summarizes our results for
be used to exploit diversity. However, combining all paths the average SNR and the AF. We show that these quantities
prohibitively complex, and evaluating the performanceactp can be computed in closed form using higher-order stagistic
of combining only a subset of paths can be a challengirg the channel coefficients. Section IV shows that using the
problem, especially under IEEE 802.15.3a UWB channplint moments of the channel coefficients, moments of the
model. SNR can be computed in closed form. In particular, the mean

The IEEE 802.15.3a standards body has developed a mggld the variance are derived. A numerical example is given in
ification of the Saleh—Valenzuela multipath channel modeglection V, and the conclusion is in Section VI.

as the accepted channel model for UWB investigations. The

specification of the Saleh—Valenzuela [11] model and its

IEEE 802.15.3a modification [2], [9] are presented in a way Il. MATHEMATICAL MODEL

that makes them easy to simulate, but difficult to analyze gyoq ency-selective fading channels are well modeled by
theoretically. However, we have recently shown that if t e-varying impulse responses of the form [10]

UWB channel model is treated as a two-dimensional point

process, then several statistical quantities of the cHarare h(t,T) = ZGk(t)é(T_Tk(t))a

be computed in closed form [4]. In this paper we study the

performance of rake receivers using maximal-ratio conmigjni

(MRC) on the IEEE 802.15.3a UWB channel. We deriv me of the impulse, respectively. Here tiigt) are the time-

simple closed-form expressions for the amount of fadmg)(A\éﬁ;rying path arrival times and the tH@y(t) are the time-

and the average signal-to-noise ratio (SNR) as a function . . . : .
: ¥ varying path gains. Since we focus on indoor environments
the number of branches combined. In addition, we show tha . ) : :
. whose structure changes slowly in comparison with the sig-
all moments of the SNR and all joint moments of the Channﬁlalin rate, we use the corresponding time-invariant médel
coefficients can be expressed in closed form, which will be 9 ' P 9 m
useful to researchers seeking to exploit higher-ordeistits, h(T) = S Gk (T — Th).
e.g., [15].
The average SNR and the AF are performance measures )
that describe the behavior of digital communication systenN€ response of such a channel to a wavef@(t) is
in the presence of fading [13]. The average SNR is the sirhples ) S GUE (T 1
performance measure to compute and requires only the first §(t) _Z k& (t = T)- @)
moment of the SNR. However, this performance measure
,does not capture all the dlverSIty, _beneflt [13]. The AF Wa_s LUWB channels exhibit clustering of the arrival times and attgion of the
introduced by Charash [3] as a unified measure of the sevelilyh gains. To capture these features, IEEE 802.15.3a ehavudlel specifies
that paths arrive at time§ of a kind of cluster process in which the gains
The authors are with the Department of Electrical and Comphtegi- Gy are independent marks [2], [9]. For analysis purposes, we ffaund it
neering, University of Wisconsin, Madison, WI 53706-1691AU&-mail:  convenient to view the pairéTy, Gx) as points of a two-dimensional point
khao@wisc.edu, gubner@engr.wisc.edu). process [4].

Index Terms— Amount of fading, channel coefficients, Saleh—
Valenzuela model, signal-to-noise ratio, ultra-wideband.

wheret and 7 are the observation time and the application
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When transmitting a signaf (t) of bandwidthW over a [1l. SUMMARY OF RESULTS
channel with delay spreadbs, the response of the tapped- ] ]
delay-line channel model [10] or virtual-channel model of The SNRA is proportional to
Sayeed and Aazhang [12] is given by

- L H = L%cplz.
&t) ~ Z)q%f(t—'TA% (2 =
|=

where L < Liax, Lmax~ TodW is the maximum number of It is shown in [Af] t.hat th.etD| are zero mean an.d. uncorre_lated,
resolvable dela,ys within the delay sprekg, andTa :=1/W. but are not s'tatlst'lca.IIy mdependent and S|gn|f|caqtlyedépt
Note that ifL < Liax then the receiver on’Iy captures energfrom Gaussian distributions [5]. The random variablg is

' .Yhe sum ofL+ 1 random variables with different distributions.

from the first L+ 1 resolvable paths or branches and i o . L
. . . ecause the&b, are not statistically independent, the distribu-
equivalent to the receiver only observing the waveform an

the interval[0,T), whereT := (L+1/2)Ta. If we let By = tion of H_ is very difficult to evaluate analytically or compute
0,Ta/2) and él - (- 1/2)'-?A ( +1/2)Ti.) for | — 1 0 E numerically. Hence, we concentrate on performance mesisure

then it can be shown that the virtual channel model (2) #Ch as the average output SNR,_the AF, and the moments of
. L e SNR at the output of the combiner as a function of number
related to (1) via the channel coefficients [6], [12]

of branches combined.
O = Zlea (Tk), 3

wherelg, (-) is the indicator function of the s&, i.e.,Ig (t):= A. Average SNR

1iftcB andlg(t):=0if t ¢ B. Note that under I.EEE . The average SNR as a function of the number of branches
802.15.3a UWB channel model, the number of terms in (3) S mbined is given by

random
If we also account for additive white Gaussian noise of R(0)E[H,]
power spectral density? at the receiver, then any signal ASNR(L) :=E[A] = 7403

detection is based on the wavefom(t) = £ (t) +n(t).
In a binary signaling scheme, there are two possible trarisis shown in Theorem 1 in Section IV that
mitted signalsé;(t), i = 0,1, and two received signalg(t). _ _ _
Since theé(t) are known, conditioned on the channel coef- E[HL] = Qo{1+RB(T,s)+CB(T, 7o) +RClsoB(T, 7o)
ficients @, the received signal§;(t) are also known. This —SoB(T7SoTo/(So—To))e*T/SO]L (5)
optimum receiver using the tapped-delay-line channel rinode
assuming the channel coefficients can be perfectly estimatehereT = (L+1/2)Ta, and
is analogous to a rake receiver using maximal-ratio compgini

. = ) — T
[10]. Hence, the conditional probability of errofis B(T,u) 2:/0 e /Mgt = u[lie—T/uL (6)
\/d?/402 ), 4
Q( /4 ) ) and the constantR (ray arrival rate)C (cluster arrival rate),

whereQ(x) := [°e **/2/,/2mtdt is the standard normal com-To (Cluster decay factor)s, (ray decay factor), an@o are
plementary cumulative distribution function, ardl is the the channel parameters of the IEEE 892.15_.3a UuwB c_hannel
distance between the received waveforfisand &. If we model. The nqmber of branches combined.is 1, andT, is
put &x(t) := &(t) — &l(t), thend? = [|&x(t)|?dt. If we put defined following (2).
&a(t) == &1(t) — &o(t), we have

L L .

d2 — % z O PpR((M—1)A), B. Amount of Fading (AF)

1=0m=0 The AF as a function of the number of branches combined
whereR(t) := [éa(0+1)Ea(6)dO is the time autocorrelation is defined as [13]
function of &x(t). If we assume that the duration of the pulses
En(t) is less tharTy, thenR((m—1)Ta) = 0 for m+# I, and AF(L) = Var(/\)z _ Var(HL)Z. R

(EIAD?  (E[HL])

L
2_ 2
d _R(O)I;q)" Since H, is the sum of squared channel coefficients, its

Substituting this into (4 and taking th tat b variance involves higher-order moments of the channel-coef
ubstituting this into (4) and taking the expectation, w ficients. Section IV shows that the variance can be computed

the average bit error probabilifg = E[Q(v/A)], where using fourth moments and the correlation of the second

. R(0)3F PP moments of the channel coefficients. Later it is shown in
A= 40?2 Sections C and D of the Appendix that the moments and the
correlations are in closed form. Hence, the AF as a functfon o
the number of branches combined can be expressed in closed
2|n the IEEE 802.15.3a model, the gai@ig are real as is the additive noise.form.

is the output SNR.
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IV. MOMENTS OF THESNR B. The Variance of H

: — E[H2]_ 2
The nth moment of the SNR is given by Using the formulavar(H.) = E[H?] — (E[HL])%, we have

L L L
R(0)"E[H] var(HL) = Z)E[qu"] + Z; > E[®— ()% (10)
(40,?)” : i= i=0j=0,]#i
For the IEEE 802.15.3a channel model, it is possible in prin-
e i _ ciple to express all joint momen&d Pt - ] in closed
the joint moments of the channel coefficients. For this BASQ, - this is shown in Section C of the Appendix. For the

first it is necessary to derive the joint characteristic fioxcof oo appearing in (10), explicit closed-form expressio
the channel coefficients in Section B of the Appendix. Theé}e given in Section D of th,e Appendix. Hencer(H,) can
by computing derivatives of the joint characteristic fioot |, computed in closed form. '

the joint moments of the channel coefficients are shown to be

in closed form in Section C of the Appendix. Thus, moments

of the SNR can be expressed in closed form. C. Higher-Order Moments of H
By the multinomial theorem,

E[A"] =

It is shown in Section IV-C that theth moment ofH, involves

L n
A. The Mean of H E[HP] = EKZ ‘D|2> ]
The mean oH_ is given by =0 |
— z ni E cDZnocDan L cDZnL
L no!'ny!---ng! 0 M1 L)
_ 2
ElH] = I;E[CM I where the sum is taken over all multi-indicas,...,nx such
B thatny+ny+---4+nk=n. As just mentioned above, the joint
It is shown in [4] that moments in this last expectation can be computed in closed
form, although it would be tedious without a computer for
E[®f] = Qo{lg, (0) +RB(Bi, %) +CB(By, To) n>2.
+RCB(By,%)B(&,%0T0/ (S0 — o)) +0B(By, To)
—s0B(By,soTo/ (S0 — To))e’b/so]}, 8) V. NUMERICAL RESULTYEXAMPLE

_ As a check of our work, we compare the mean and variance
wheregq is the left-hand end point of the intervB|, 3(-,-) using the closed-form expressions (5) and (10) with Monte—

is defined in (6), and for any s& and > 0, Carlo estimates by simulating 30,000 realizations of tHeHE
_ 802.15.3a UWB channel model. For the numerical example,
B(B,u):= / e t/Hdt. (9) Wwe consider the channel model CM3 in [2, Table II], namely
JB

Qo =1/[(1+R)(1+C1)], C=0.0667 R=21,
If B is an interval[a.b), then B(B,u) = u[e*a_/“ —e b/H), =14 =79,
Also, B([0,T),u) = B(T,u). Since all ourB, defined follow-
ing (2) are intervals, we have (8) in closed form. All times are in nanoseconds. _ _
Theorem 1:The expectatiorE[H, ] is given by (5). The examples use the time resolutidp = 1 ns. Fig. 1
Proof: Suppose we divide the intervdd,T) into the shpws that the mean (top). and variance (bottom) c.omqued
nonoverlapping intervals as done following (2). Each clenndsing closed-form expressions and estimates by simulation

coefficient,®,, is defined as the sum of the path gains in th&€ Very close. Since the mean is normalized to 1, the mean
corresponding intervad,. Since it is shown in [4] that they, ~C¢@n be used to represent the percentage of expected energy

are zero mean and uncorrelat(ﬁﬂcbﬂ — var(®)), and captured b_y the rake receiver using maX|maI-rat!o comiginin
as a function ofL. Note that the average SNR is the same

0% =0%+02, 01=0,=233941

L L L curve as a function of multiplied by a scale factor.
Z)E[CDF] = Zjvar(q’l) = Var(Z)q%) Fig. 2 shows the AF as a function of the number of branches
1= 1= 1= combined computed using (7). In this channel model, the
= Var(ZGkI[O’T)(Tk)) by (3). combiner efficiently mitigates the fading for the first brhas
combined and the AF remains almost constant beyond 40

ranches combined.
This implies thatE[H,] can be computed using the right hanc? S !

side of (8) by replacindd with [0,T) anda with O. O]

It is also shown in [4] that VI. CONCLUSIONS

We have derived closed-form expressions for the average

. SNR and AF as a function of the number of branches com-
Tlu;r1mvar(Zle[o7T)(Tk)) = Qo(1+R9)(1+Cro), bined by rake receivers using MRC on the IEEE 802.15.3a
UWB channel model. The AF can be used to evaluate how

which is the maximum value d&[H,]. effectively rake receivers using MRC mitigate fading under
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1 ‘ Let f; s(-) denote the density of a path gain arriving at time
sthat is part of a cluster that started at timeg~ollowing Saleh
—, and Valenzuela [11, eq. (26)] and Ba#gal. [2, p. 2126], we
I 05- ] .
o — Analytical assumef; s(-) has second momeht
- - Simulation Qoe*T/Toe*(S*T)/So’ (12)
% 20 40 60 80 100 WhereTy andsy are power-delay time constants af)d is a
L scale factor. For the |IEEE 802.15.3a model in [2]{-a1}-
EEmmE———SSSS valued-Bernoulli1/2) mixture of lognormal densities is used.
0.2- T 4 This implies that ifG has densityf; 5(-), then 20logy|G| is
=018 | normal with mean ,
5 g . 10 In10\2 0
< 0.1 : — Analytical | 7 - [ _ —(s— — <_) _}
’ 0.05 -~ Simulation| | Hrs = in10 InQo—1/to—(s=-1)/% 10/ 2 (13)
0 ‘ ‘ ‘ ‘ and varianceg?. The lognormal mixture density and the
0 20 4 60 80 100 jognormal density are related by
frs(x) = 3[f X)+ f —X 14
Fig. 1. E[HL] (top) andvar(HL) (bottom) as a function of branches combined. T’S( ) 2[ ‘G"LS( )+ ‘GI"T’S( )]’ (14
where fig 1 s(+) is the lognormal density with parameteuss
3 and o. The characteristic function of the lognormal mixture
random variable is
ol 1 Lro(V) = ErglelV®] = / eV9f, (g)dg
LL —00
< . .
1 1 We also need the following notation. LBt= [a,b),
L L L L L fr?]ax(ayr 1_LTS(V)dS T S b?
% 20 40 . 60 80 100 Y(r.v,[ab)):= {o, : T>h (15)
and

Fig. 2. Amount of fading as a function of the number of brancteshined.

a
J(v,[ab) = /O 1_ e RUTv[ab) §r

b
the IEEE 802.15.3a UWB channel model. These closed-form +/ 1-Loo(v)e REvREIgr - (16)
expressions quantify the effects of the number of branches a
combined on these performance measures, and ultimatsly tfie simplify the notation, we defing (7,v) := ¢/(7,v,B;) and
will be of great benefit to researchers in the analysis angjdesJ (V) :=J(v,By), whereB is defined in Section IL.
of UWB systems. Since the AF requires higher-order stasistic
of the SNR, it was necessary to derive the joint characierisB- The Joint Characteristic Function
function of the channel coefficients. By computing derivesi  From the definition of the channel coefficients, we can write
of the characteristic function, we have also derived clesethe joint characteristic function as
form expressions for joint moments of the channel coeffisien isE ovo
Furthermore, we have shown that moments of the SNR can W(vo,va,...,w) = E[el2=0" ],
be computed in closed form. Our results should be useilis shown in [4] that a counting integral of the form (11) can
to researchers seeking to exploit higher-order statistiabe be written as the sum of the three statistically independent

channel coefficients as well as the SNR. terms ¢ (0,Go) + Pro + Ps. Therefore, each channel coeffi-
cient defined in (3) is composed of either two or three terms,
APPENDIX ie.,
A. Definitions and Notation o = (0, Go) + Por0 + P = Go + Po o+ Poc,

In [4] it is shown that the pair§Ty, Gx) can be regarded as
points of a two-dimensional point process. The key ideaés t
use of thecounting integral

f, [ pson@sxdo = oGy (D

hereGq is a lognormal mixture random variable, and fos
, @ =@ o+ P 5. By independence, the joint characteristic
function can be written as three factors,

L L
W(vp,...,v.) = E[e/0®]E [rLej"'q"ﬂfo} E {rLei"'q"@] :
whereN(-) is the counting measureon [0, %) x (—o, ©) that = =

puts a unit mass at each poifk, Gi), where the arrival times  3This is in contrast to [2] and [11]. Their ray processes weeénéd by

Tk and the path gain@k are specified by the IEEE 802.15.34aking Poisson processes starting at time zero and therlatiagsthem by
the arrival time of the initial path in the cluster. The two stmctions are

model. Note that if we take(s,g) = ¢1(s,9) With ¢/(S,9) =  equivalent provided we adjust the definition ffs(-). This is done in (12)
glg (s), thend, in (3) is a special case of the (11). where we us&— T; [2] and [11] would use onl.
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The first factor is simplyZoo(Vo) and it is shown in [5] that C. The Statistics of the Channel Coefficients

it can be evaluated numerically. The second factor involves - !
family of @, 0. As shown in [4], each® o is a shot-noise 1) Moments of the Channel Coefficients¥e show that

random variable driven by a two-dimensional Poisson pmce??r:]ews of tht:h?harmnellt(ioefﬁ(;l]entwsaca: beinCOSmptl:t(re]d[l)n closed
with intensity function (as a function df, g)) orm. We use this result to computer(H.) in Section D.

To derive the moments of the channel coefficients, we use

A (5,9/0,Go) =Rfos(g), s>0,g€R. derivatives of the characteristic function of the chanruedft-
T Y - cients. The characteristic function of the channel coeffitip,
Hence, we have from [8, Ch. 3] that each factor is giveld 9iven byWe (v) =%(0,...,v,...,0), where only argument

by E[exp(jvi®; 0)] = exp(—Ry;(0,v)). Since the channel | 4+ 1 of the joint characteristic funcnon is not zero. Hence,
coefficients lie in disjoint sets, they are independent,sthu RUO(0.v) o (V)

the second factor is simply the product of these factors, i.e Wa, (V) = Loo(v)e e : (18)
exp[—R3 | ¥i(0,v)]. The third factor involves the 5. As

noted in [4, Appendix C]® . can be written in the form and
@ = Vi + R, where, analogous to (11), Wy, (v) = e RUOVIgCIv) | >, (19)
V= /w/w &1 (T, y)NL(dT x dy) It is shown in [5] that the characteristic functions of theach
0 J-o ’ nel coefficients are even functions of and the probability

density functions exist and are also even functions. Hence,

and odd moments of the channel coefficients are zero. The even
R —/ / #1(s,9) Ny (dsx dg), moments are
k —k
whereN; is the Poisson process with intensity function E[®] = ] LP ( )lv=0, k even
A(T,y) :=Cfr(y), T>0, yelR. wherewg‘l)(v) is thekth derivative of the characteristic func-
tion of @,.
and conditioned on the realization &f;, N, is a Poisson  To compute thékth derivative of the characteristic function,
process with intensity (cf. [4, Appendix B]) we apply Leibniz’s rule,
s,:wm/\s,r,Ndrxd. K 7k _
(59)= [ f Msdrymr<dy (19109 = 3 (1) 009" o
I=

The intensity functiom,(s,g|T,y) in this case is given by o o o .
Leibniz’s rule implies that the derivatives of the produit &

M(3.91T,Y) = Rfrs(Q)lir.)(9), closed form if derivatives of (x) andg_(x) are in closed form.
Thus, we need to show each factor in (18) and (19) evaluated

which A;(s,g|T,y) depends orr but not y. Conditioned on at V_:O is in closed form. _ _
the realization oNy, the definition offf means thaf has the  Since moments of the lognormal random variable are in

conditional characteristic function closed form, it is easy to show that moments of the lognormal
mixture random variable are also in closed form. Because the

E[eP Ny ()] = exp{—R/m/(m i (T, v) No(dT xdy)], density of the lognormal mixture random variable given by
0 J-o (14) is an even function, odd moments are zero and even

moments are given by
where the last step uses the fact thg(s,g) = glg, (). Let us

denote this last double integral loy(v;). Observe thaty (V) mursIn(10)  mo?In(10)2
P ;

Co . ; : i=mp (M) oy
looks just likeV; above, except with a different integrand. Then er.,s)(O) =€ 20 + 2020 ;- (20)
L L L
- : for m even, whereu; s is given by (13).
E[[1eV®®| = E|ex vVl — Ray (v TS
Lr!) ] { p{lzoj M I ')H The factors in (18) and (19) are exponential functions
= exp(—CJ(vo, ..., )), (17) (exceptLoo(V)). It is easy to see that thith derivative of
these factors involve the functions themselves and deraést
where of the exponentsy;(0,v) and J(v). One can show that

e R0 =1 ande ©(O =1, Thus, the derivatives of these
= factors evaluated at= 0 are essentially derivatives ¢f(0,v)
o,V / / { —I;M(r,y, VI)} fr(y)dydt, andJ(v) evaluated av = 0.

The function ¢4(7,v) given by (15) is an integral of
andk (1,y,v) == jvylg (1) —Ryi(1,v). The last step in (17) the characteristic function of the lognormal mixture ramdo
follows from the fact thalN; is a Poisson process with intensityvariable with respect to the variatdeBecauseu; s is an affine
A1(1,y) [8, Ch.3]. function of the variables, with a bit of work, one can show
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that for k even are functions that ara times differentiable, then
—*Ka(K)B(Bi,250/K) an o n! rodv
-exp—kt(so—T0)/(2%0T0)], T<4 dtn [l i) =2 niinp!---np! [l g 1)
— j*Kgq (k)2 —Kkt/(210)] /K = =

®) _ ) —I"Ka(K)2sgexp—kT/(210)]/ . o
¢ (1,0) = +ijQ(k)ZS)qu*b| k/(2s0)] /K where the sum is taken over all multi-indices, ..., n; such
thatngy +no+---4+n =n.
-exp—k1(s0—10) /(250T0)], <1<b 1T r
A=kt (%0 = To)/(250To)] a ! Let x(v) := e R¥%(OV) |t can be shown that
0, T>Db
(21)

W(vo,...,vL) = Loo(Vo)Xo(Vo) -+~ XL (Vi)

k/2 50 9 5 02 'KJ(VO7"'aVL)? (24)
Ka(k) = Qo " expio”In“(10)(k°/2—=k)/207), - (22) where K3(vp,...,v ) = exp(—CX(Vvo,...,vL)). The function

B(-,-) is given by (9) andB, := [&,by). It is straightforward J.(vo,...,vL) can be written as

to see thatpl(k)(r,v)|v:0 =0 if k is odd. w o (Voo VL)

The function J(v) in (16) involves two integrals. The — Je(Vo,---; VL) :/0 /4()(1*‘9kc 0B frp (y)dydr,
derivatives of the first integral with respect toand evaluated
at v =0 are integrals of derivatives @ R%(%:V)|,_q, which
we have already shown are in closed form given by (21). Since Ke(Vo, -, VL, T, ) = ijViV'Bi (1) = R (T, ).

where

where

the integrand is an exponential functionmfthe first integral 4
is in closed form. The integrand of the second integral is in

product form, therefore we can apply Leibniz’'s rule again :
. L We have shown that the firét+ 1 factors of (24) evaluated
After applying Leibniz's rule, each term evaluatediat- 0 tvi=0fori=0,...,L are in closed form. To show that the

is the product of two exponential functions given by (20) an?erivatives ofks(Vo, .., v;) evaluated avi — O for i = ..., L

(21). Since the integrand is an exponential functiorr pthe : . .
second integral is also in closed form. are .also in closed form_, V\(e,use the same techmque discussed
At first glance, it seems that many terms need to beegrher, and we use Leibniz’s rule one more time. Hence, the
computed to evaluate the moments. However, we show ﬂl](%‘lpt moments of the channel coefficients can be computed in
odd derivatives of the factors in (18) and (19) evaluated gtosed form.
v =0 are zero. From (20), it is clear that odd derivatives o
the factorLoo(V)|v=o are zero.
Theorem 2:The odd derivatives o& R% (V) and e C3(v)
evaluated av = 0 are zero.
Proof: This can be proved by induction. Leg(v) :=
e RU(TY) |t is easy to show the first derivative of.(v) at D. The Variance of H
the origin is zero. Now suppose thatis an odd number and We introduce some notation to simplify the closed-form
suppose that all odd derivatives from the first derivativéh® expression, 3 (u) := B(Bj,u), B_:= B(Bi,s0T0/(2% — T0)),
nth derivative evaluated at= 0 are zero. Then+2is anodd S :=3(B,sTo/(2(so—To)), andf := B(a,%0To/(2(so— o)),
number and applying Leibniz’s rule, th@+ 2)th derivative wheref(-,-) and(-,-) are given by (6) and (9) respectively.
is given by It is shown in Section C of the Appendix that the moments
Ml q of &, are in closed form. The fourth moment & for | #0

x§”+2><v>=.Z>(u AR P @), s given by

o o o 3RPQ3B2 (s0) — BROQZA, (s0)mi + 3C2Q3n/
.If. i+1is odd,(thrrl()anpl . (1,0) is zerq. If|.4.r1 is even, then +RKq(4)B(s0/2) — Cil (25)
i is odd andy;” " (t,0) is not zero. Since is odd andn+1 o
is even (becausa is odd), thenn+1—i is odd. Therefore, WhereKo(4) is given by (22),
1— . . . X —
iétz)'t)éog is z$ro b%/ tfge)|ndu|ct|otndhy§)/othgs.|s. Hence, fthe M = —PBi (7o) — RIBi(s0)B(&,S0To/(So— To))
n erivative ofx;(v) evaluated av =0 is a sum o _ b/s _
zeros. The same proof applies&o® (V). O So(Bi(To) — € (To/ (0~ T0)))];
Thus, all moments of thé, are in closed form. and
2) Joint Moment of the Channel CoefficientSeneralizing — 2 b /%o
the ideas from the previous subsection, the joint momerteoft M = —Ka(4)B(T0/2) — 6RQG[s0(fBi(To/2) — €/ f]

To compute (23), we apply the generalized Leibniz’s rule.

As a special case, the correlation of higher moments is
efined af[fbipdb?] for any positive integerp andg. It can

be computed by setting; = p, nj =g andn, = 0 for all k
with ki andk # j.

channel coefficients is computed using the joint charastteri —3R29c2>[ﬁ|2(30),§|+%(B|(To/2)_— 26 /%,
function of the channel coefficients, i.e., +e 2/%B] — RKq(4)[B(S0/2)B —s0/2(Bi (To/2)
"Wy, ... e M/%p
E[(DBO(D?l_HCDEL] _ .‘:anO(VO, d:l_L) , (23) € Bil-
J700Vor -+ 0L fyg=0,... =0 To compute the fourth moment oby, we use the same

wheren=np+n; +---+n.. To compute the derivatives, weexpression (25) by replacin@®, with By and adding the
apply the generalized Leibniz rule. It says thafif f2,..., f,  following two terms,Kq(4) + 6Q3[RBo(So) — Cno).-
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The correlation of the second moment (fg£ 0 and j # 0)
can be computed as

where LPQ)i’q;)j(Vi,Vj) is the joint characteristic function of

0*Wo, 0; (i, V)

242
E[®7of] = j402v;02v)

vi=0,vj=0

channel coefficientsh; and ®;. With a bit of work, it can

be

wh

shown thaE[®?®?] is given by

Q3[R (s0) Bj (o) — RCBi (s0) 1 — RCB; (s0) i + C?Nin
+RB;(s0)[CB: + RBi(s0) B + RC(B — RBie /%)),

ereB; ;= [g,b;) and Bj = [a;,b;) with & < b < aj < b;.

(5]

(6]

(7]

(8]
El

In the caseE[®j®?] for j # 0, it is the same expression by

foll

(1]

(2]

(3]

(4]

replacingB; with Bp, keeping the sam&;, and adding the :
11

owing termsQ3[RB;(s0) —Cn)j].
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