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Linear Estimation of Signals Transmitted
over the IEEE 802.15.3a UWB Channel

Kei Hao and John A. Gubner,Member, IEEE

Abstract— When transmitting a known signal over a multipath
channel, the received waveform is a stochastic process due to the
random nature of the multipath arrival times and gains. Any
program aimed at linear estimation of the random waveform
requires its correlation function. Explicit formulas are given for
this correlation function when the multipath arrival times and
gains are described by the recently developed IEEE 802.15.3a
ultra-wideband (UWB) channel model. When the transmitted
signal is a Gaussian monocycle, the correlation function can be
obtained in closed form. More generally, structural properties of
the correlation function are derived, and it is shown that linear
estimation of UWB quantities is tractable.

Index Terms— Correlation function, Gaussian monocycle, lin-
ear minimum mean squared error estimation, signal estimation,
ultra-wideband (UWB).

I. I NTRODUCTION

If a waveformξ (t) is transmitted over a multipath channel,
the receiver observes the waveform

Y (t) = X(t)+W (t),

whereW (t) is additive white Gaussian noise with zero mean
and power spectral densityσ2

W , and

X(t) = ∑
i

Giξ (t −Ti). (1)

In this paper, we assume that the random multipath arrival
times and gains are specified by the IEEE 802.15.3a UWB
channel model as described in [1], [3], [9], [10]. For the
purpose of second order analysis, this model is completely
characterized by the channel parameters

Ω0,C,R,τ0, and s0, (2)

whereΩ0 is a scale factor,C is the cluster arrival rate,R is the
ray arrival rate, andτ0 ands0 are power-delay time constants.

If the signalX(t) were deterministic, then digital commu-
nication over the UWB channel would be reduced toM-ary
detection. However, the signalX(t) is random due to the
multipath nature of the channel. One approach would be to
compute linear minimum mean squared error estimates of
X(t) based onY (t). The key quantity in this or any similar
program is the correlation functionΓX (t,θ) := E[X(t)X(θ)]
and its associated operator on waveformsb,

(
Γ̃X b

)
(t) :=

∫ ∞

−∞
ΓX (t,θ)b(θ)dθ .

Unfortunately, the complicated structure of the IEEE 802.15.3a
UWB channel model makes the determination ofΓX (t,θ) a
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formidable task. In this paper, we use recent results in [6]
to obtain explicit formulas for the correlation function and
its associated operator in terms of the channel parameters (2)
and the transmitted waveformξ . A common choice forξ in
UWB studies, e.g., [2], [12], is the Gaussian monocycle, which
has the form(1− t2)e−t2/2. In this case, we show that the
correlation function can be obtained in closed form.

Since the front end of a receiver typically correlates
the incoming signal with various template waveforms, say
b1, . . . ,bK , the matrices withi j elements

〈b j,bi〉 :=
∫ ∞

−∞
b j(t)bi(t)dt and

〈
Γ̃X b j,bi

〉

are of central importance. In this paper, we exploit our formu-
las for the correlation function and its associated operator to
derive structural properties of the second matrix. We show
that under conditions met in practice, it is multidiagonal
and therefore sparse. Furthermore, since few of its nonzero
entries are distinct, their evaluation does not require much
computation. We also show that in a special case, the matrix
is guaranteed to be invertible.

II. A SSUMPTIONS ANDNOTATION

We assume that the template waveformsb1, . . . ,bK are
linearly independent. Hence, these waveforms are a basis for
the subspace

B := span{b1, . . . ,bK}.
The projection [8, pp. 160–161] of a waveformx onto B is
given byB(B∗B)−1B∗x, whereB is the linear operator defined
by

(Bc)(t) :=
K

∑
k=1

ckbk(t), c := [c1, . . . ,cK ]′ ∈ IRK ,

where the′ denotes the transpose, andB∗ is the adjoint ofB,
given by

B∗x =
[
〈x,b1〉, . . . ,〈x,bK〉

]′
.

It is easy to check thatB∗B is the K ×K matrix whosei j
element is〈b j,bi〉.

If we correlateY (t) = X(t)+W (t) with each templatebk(t)
and collect the results into a column vectorY, we can write

Y = X +W,

whereY := B∗Y , X := B∗X , andW := B∗W . The correlation
matrix of W is ΓW := E[WW ′] = σ2

W B∗B, while

ΓX = B∗Γ̃X B,

ΓXY = ΓX , andΓY = ΓX +ΓW . In particular, note that thei j
element ofΓX is given by

〈
Γ̃X b j,bi

〉
.
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Remark: The linear minimum mean squared error estimate
of X based onY is given byAY, whereA is theK×K matrix
that minimizesE[‖X −AY‖2] and‖ · ‖ is the Euclidean norm
on IRK . This is a standard textbook problem, e.g., [5], and
the optimalA is any solution of the normal equationsAΓY =
ΓXY . It is easy to see thatΓY = B∗(σ2

W I + Γ̃X
)
B is invertible

since the operatorσ2
W I + Γ̃X is positive definite and sinceB

is nonsingular on account of the linear independence of the
templatesbk. We can therefore writeA = ΓXΓ−1

Y .

III. T HE CORRELATION FUNCTION ΓX (t,θ)

A straightforward generalization of [6, eq. (21)] shows that

ΓX (t,θ) = Ω0[ξ (t)ξ (θ)+Qξ (t,θ)], (3)

where1

Qξ (t,θ) :=
∫ ∞

0
ξ (t − s)ξ (θ − s)q(s)ds, (4)

and

q(s) := Re−s/s0 +Ce−s/τ0 +CR
s0τ0

s0− τ0

[
e−s/s0 − e−s/τ0

]
.

Note that the last term is nonnegative whethers0 < τ0 or s0 ≥
τ0, and thusq(s) > 0 for all s. Furthermore,

q(t −θ) = e−t/s0qs0(θ)+ e−t/τ0qτ0(θ)

where

qs0(θ) = Reθ/s0

[
1+C

s0τ0

s0− τ0

]
, (5)

and

qτ0(θ) = Ceθ/τ0

[
1−R

s0τ0

s0− τ0

]
. (6)

We now mention several cases in whichQξ (t,θ), and hence
the correlation functionΓX (t,θ), can be obtained in closed
form.

Observe that sinceq(s) is a sum of decaying exponentials,
it suffices to consider integrals of the form

∫ ∞

0
ξ (t − s)ξ (θ − s)e−s/µ ds, (7)

where µ = s0 or µ = τ0. Hence, if ξ is piecewise constant,
Qξ (t,θ) can be obtained in closed form. More generally, if
ξ is a polynomial, or even piecewise polynomial, repeated
integration by parts allows (7) to be computed in closed form.
More interestingly, a straightforward but tedious calculation
shows that whenξ is the Gaussian monocycle,ξ (t) = (1−
t2)exp(−t2/2), (7) is given by

Qξ (t,θ) = e−(t2+θ2)eα2/2[Fα(0)d0(t,θ)+Fα(1)d1(t,θ)],

where

Fα(0) = Q(−α/
√

2)
√

4π, Fα(1) = e−α2/2/2,

Q(x) = (
√

2π)−1∫ ∞
x e−t2/2 dt is the standard Gaussian com-

plementary cumulative distribution function,α = t +θ −1/µ ,
and d0(t,θ) and d1(t,θ) are combinations ofα and ai(t,θ)

1 The lower limit in the integral definingQξ (t,θ) stems from the fact
that under the IEEE 802.15.3a model, the path arrival timesTi in (1) are
nonnegative.

for i = 0, . . . ,4 which are the coefficients of the polynomial
(1− (t − s)2)(1− (θ − s)2) as a function ofs. More generally,
it can be shown that ifξ (t) = p(t)e−t2/2, where p(t) is a
polynomial, then (7) can be obtained in closed-form using
appropriately defined coefficientsFα(k) anddk(t,θ).

IV. PROPERTIES ANDSTRUCTURE OFΓX

Using (3), we see that

(ΓX)i j =
〈
Γ̃X b j,bi

〉
= Ω0

[
〈b j,ξ 〉〈ξ ,bi〉+

〈
Q̃ξ b j,bi

〉]
, (8)

where (
Q̃ξ b

)
(t) :=

∫ ∞

−∞
Qξ (t,θ)b(θ)dθ .

The structure ofX(t) in (1) suggests that we takebk(t) =
β (t− tk) for some waveformβ and some fixed shifts 0≤ t1 <
· · · < tK < ∞ (we continue to assume that thebk are linearly
independent). For example, we could takeβ (t) = ξ (t) and
use uniformly spaced shifts [7], [11], but we do not do so
yet. Whenbk(t) = β (t − tk), it is convenient to introduce the
temporal correlation function

Γβ (τ) :=
∫ ∞

−∞
β (t + τ)β (t)dt

and the temporal cross-correlation function

Γξ β (τ) :=
∫ ∞

−∞
ξ (t + τ)β (t)dt.

Then the elements ofΓW = σ2
W B∗B are just σ2

W 〈b j,bi〉 =
σ2

W Γβ (ti − t j). Similarly, in (8), 〈ξ ,bi〉 = Γξ β (ti), and

〈
Q̃ξ b j,bi

〉
=

∫ ∞

0
q(s)Γξ β (ti − s)Γξ β (t j − s)ds. (9)

If we consider the Gaussian monocycle for bothξ (t) andβ (t),
thenΓξ β (τ) = Γβ (τ) = (1−τ2+τ4/12)exp(−τ2/4), which is
essentially the product of a polynomial and Gaussian density.
Hence, in this case, (9) has the same structure as (4), and
as noted in the discussion following (7), can be expressed in
closed form.

A. ΓX Is Invertible If β = ξ
On account of (8), observe thatΓX is positive definite if for

b ∈ B,
〈
Q̃ξ b,b

〉
= 0 impliesb = 0. Since

〈
Q̃ξ b,b

〉
=

∫ ∞

0
q(s)

∣∣∣∣
∫ ∞

−∞
ξ (t − s)b(t)dt

∣∣∣∣
2

ds,

〈
Q̃ξ b,b

〉
= 0 implies that the inner integral must be zero for

almost everys ≥ 0. For reasonable waveformsξ (t) and b(t),
e.g., having finite energy [4, p. 232, Prop. 8.8], the inner
integral is a continuous function ofs, in which case it must
be zero for alls ≥ 0. Let

Ξ := span{ξ ( ·− s),s ≥ 0}.
The condition〈ξ ( · − s),b〉 = 0 for all s ≥ 0 says thatb ∈
Ξ⊥, the orthogonal complement ofΞ. If we takeB ⊂ Ξ, then
Ξ⊥ ⊂B

⊥. In this case,b ∈ Ξ⊥ implies b ∈B
⊥. Sinceb ∈B,

this means thatb is orthogonal to itself; i.e.,〈b,b〉= 0, which
implies b = 0. If we takebk(t) = β (t − tk) and β (t) = ξ (t),
thenB ⊂ Ξ andΓX will be invertible.



SUBMITTED TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS APRIL 21, 2006 3

B. ΓX Is Sparse Multidiagonal If β and ξ Are Finite-Duration
Signals

We continue to assumebk(t) = β (t − tk), but we donot
assumeβ (t) = ξ (t).

Using a change of variable in (9) yields

〈
Γ̃X b j,bi

〉
=

∫ t j

−∞
q(t j −θ)Γξ β (ti − t j +θ)Γξ β (θ)dθ .

Applying (5) and (6) shows that
〈
Γ̃X b j,bi

〉
is equal to

e−t j/s0

∫ t j

−∞
qs0(θ)Γξ β (ti − t j +θ)Γξ β (θ)dθ

+ e−t j/τ0

∫ t j

−∞
qτ0(θ)Γξ β (ti − t j +θ)Γξ β (θ)dθ .

(10)

Now suppose thatξ andβ both live on[0,∆]. ThenΓξ β (τ) = 0
for |τ| ≥ ∆. This implies that the lower limits in (10) can
be changed to−∆, and the upper limits can be changed to
min(t j,∆); i.e., (10) becomes

e−t j/s0

∫ min(t j ,∆)

−∆
qs0(θ)Γξ β (ti − t j +θ)Γξ β (θ)dθ

+ e−t j/τ0

∫ min(t j ,∆)

−∆
qτ0(θ)Γξ β (ti − t j +θ)Γξ β (θ)dθ .

(11)
It then follows that (11) is zero for|ti − t j| ≥ 2∆. This implies
that ΓX is a multidiagonal matrix. To be more precise about
this, let

δ := min
2≤k≤K

(tk − tk−1),

and for convenience, assume that

∆ = nδ

for some positive integern. Then for i > j,

ti − t j =
i

∑
k= j+1

tk − tk−1 ≥ (i− j)δ ,

and we see that|ti − t j| < 2∆ implies |i− j| < 2∆/δ = 2n.
Hence, ΓX is nonzero only on the main diagonal and on
the 2n−1 upper and lower diagonals. A similar analysis of
〈b j,bi〉 = Γβ (ti − t j) shows thatB∗B is multidiagonal with
nonzero entries only on the main diagonal and on then−1
upper and lower diagonals.

Without loss of generality, we restrict attention tot j ≤ ti and
point out some simplifications in (11). Write

t j =
j

∑
k=2

tk − tk−1 ≥ ( j−1)δ .

Then the largest value ofj with t j < ∆ satisfiesj < 1+∆/δ =
1+n. For each suchj, we must compute (11) fori = j, . . . ,n.
There are at mostn(n + 1)/2 such times that (11) must be
computed. (Ift1 ≥ ∆, there are not j with t j < ∆.) For t j ≥ ∆,
the integrals in (11) depend onti and t j only through their
difference. For example, iftk − tk−1 = δ for all k (uniformly
spaced basis functions), then we only have to compute the
integrals in (11) forti−t j = (i− j)δ for 0≤ i− j < 2n. Hence,
for uniformly spaced basis functions, there are at mostn(n+
1)/2+2n times that we need to evaluate (11).

Example: Consider a UWB system in which a signalξ of
duration∆ = 1 ns is used. Letδ = ∆/2 so thatn = 2. In a line-
of-sight channel such as CM1 [3], we might want the basis
functions to cover the first 40 ns, which corresponds toK = 80.
Thus, althoughΓX has 6400 entries, only the main diagonal
and the 3 upper and lower diagonals are nonzero (fewer than
7K = 560 or 9% nonzero values). More importantly, (11) has
to be evaluated at most 7 times.

V. CONCLUSION

We have considered received UWB signalsX(t) in (1)
when the multipath arrival times and gains are given by the
IEEE 802.15.3a channel model. We have presented explicit
formulas for the correlation functionΓX (t,θ) = E[X(t)X(θ)]
in terms of the transmitted waveformξ and the channel
parameters (2). We showed that in many cases of interest,
including the Gaussian monocycle,ΓX (t,θ) can be found
in closed form. Even when the correlation function is not
available in closed form, we showed that under fairly general
conditions, the matrixΓX is multidiagonal with few distinct
nonzero entries to be computed. We also showed that if the
receiver correlates its input with shifts of the transmitted pulse
ξ , thenΓX must be invertible.
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