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Abstract— Ultra-wideband technology has been pro-
posed as a viable solution for high-speed indoor short-
range wireless communication systems because of its ro-
bustness to severe multi-path and multi-user conditions,
low cost, and low power implementation. This paper
proposes and analyzes a multi-user time-hopping system
in which symbols are sent multiple times. A single-user
receiver structure is proposed in which collisions with
interfering users are discarded. Two formulas for the
probability of error are derived. The first formula is a
finite sum in which the number of terms grows with the
number of symbol repetitions. The second formula is an
integral that is well-suited to Chebyshev–Gauss quadra-
ture as well as for allowing the derivation of bounds on
the probability of error. Asymptotic formulas and upper
bounds for the error probability are derived by letting
various system parameters go to infinity. We evaluate the
bounds numerically for some reasonable parameters and
study their interplay with other parameters of interest.

I. INTRODUCTION

Time-hopping combined with pulse position mod-

ulation was the original proposal for ultra-wideband

(UWB) systems [9], [6]. In digital communications

(such as ultra-wideband) design, the theoretical ex-

pression representing the error probability, Pe, is often

so complicated that it is impractical to use in error

probability analysis. Often it is easier to work with

a simpler expression, representing an upper bound

for Pe [3]. In this paper we study the average error

probability of a time-hopping (TH) UWB system in a

dense multi-user environment at a relatively low SNR.

This paper develops a simple formula involving some

parameters of a wideband communication system such

as the number of slots, the number of transmission

frames, and the number of users. Upper bounds and

two exact formulas for the average bit-error prob-

ability (BEP) for a time-hopping scheme combined

with spread spectrum (pulse position modulation) are

derived. Three bounds on the error probability based

on the central limit theorem (CLT), Stirling’s approx-

imation of the binomial, and the Chernoff bound are

also developed and compared. We evaluate the bounds

numerically for some reasonable parameters and study

its interplay with other parameters of interest.

The organization of the paper is as follows. In

Section II, a single-user receiver structure is presented

and its signal processing described. An exact formula

for the average probability of error of the time-hopping

UWB system is derived.

Section III deals with the asymptotic analysis of

the average probability of error. Asymptotic formulas

are derived by letting various system parameters go

to infinity. Upper bounds on the BEP of the system

using established mathematical results are derived in

this section. Another exact formula for the BEP of the

system is derived in this section.

Section IV presents a comparison of the bounds

and formulae developed throughout the paper. With

reasonable numerical assumptions on the parameters

of the system, the bounds and the BEP formulas are

compared.

Section V contains our conclusions.

II. AVERAGE PROBABILITY OF ERROR IN A

TIME-HOPPING PPM SYSTEM WITH COLLISIONS

A. Time-Hopping PPM System Model

In a time-hopping system, a user conveys a message

by sending several delayed copies of a basic pulse

s(t). The pulse s is chosen from a finite set of signals

S, where each signal in S has duration at most Tc.

The transmission of copies of s takes place over

a sequence of Nf “frames,” each of duration Tf ,

where NcTc ≤ Tf for some positive integer Nc. The

inequality accounts for a small portion which serves as

the guard time. Moreover, the ratio NcTc/Tf indicates

the fraction of the frame time Tf over which time-

hopping (TH) is allowed.

During the �th frame, the pulse is transmitted during

“chip” c� ∈ {0, . . . , Nc−1}. We call {c0, . . . , cNf−1}
the time-hopping sequence. The total transmitted

waveform is

x(t) :=
Nf−1∑
�=0

s(t − c�Tc − �Tf ). (1)
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B. The Multi-user Environment

In general, there are Nu users transmitting at the

same time. However, each user employs a different

time-hoping sequence so that in most frames, no two

users transmit during the same chip. Let G := {� :
in frame �, no other user transmits during chip c�}.

Then G := |G| is the number of “good” frames; i.e.,

the number of frames in which no other user transmits

during chip c� of the desired user.

C. A Single-User Receiver Structure

Assuming that the receiver knows the time-hopping

sequence {c�} of the desired user as well as the good

frames G, the receiver looks only at the good frames;

i.e., the receiver ignores the frames in which collisions

occur. For example, if there are 4 such good frames,

the received waveform is depicted in Fig. 1. Then

for each ŝ ∈ S, the receiver correlates the incoming

waveform with

x̂(t) :=
∑
�′∈G

ŝ(t − c�′Tc − �′Tf ).

Now observe that∫
x(t)x̂(t)∗dt =

Nf−1∑
�=0

∑
�′∈G

∫
s(t − c�Tc − �Tf ) ×

ŝ(t − c�′Tc − �′Tf )∗dt.

Since s and ŝ are of duration at most Tc, the integral

on the right is zero unless � = �′. This can happen

only for � ∈ G. Hence,∫
x(t)x̂(t)∗dt =

∑
�∈G

∫
s(t − c�Tc − �Tf ) ×

ŝ(t − c�Tc − �Tf )∗dt

= G

∫
s(t)ŝ(t)∗dt.

In other words, from the receiver’s point of view,

the transmitter might as well have sent the signal∑
�∈G s(t − c�Tc − �Tf ) instead of x(t) in (1).

Fig. 1. Received waveform sequence when there are 4 such good
frames.

In the case of binary signaling, say S = {s0, s1},

the probability of error for an additive white gaussian

noise (AWGN) channel depends only on the distance

between∑
�∈G

s1(t − c�Tc − �Tf ) and
∑
�∈G

s0(t − c�Tc − �Tf ).

It is easily seen that this distance is equal to
√

G
times the distance between s0 and s1. In the case of

orthogonal signals s0 and s1 of equal energy ξ, the

probability of error conditioned on G = g good frames

is

h(g) := Q

(√
gξ/σ2

n

)
, (2)

where σ2
n is the AWGN power spectral density, and

Q(x) :=
∫ ∞

x
e−t2/2/

√
2πdt is the complementary

cumulative distribution function of a standard normal

random variable. Ultimately, we are interested in

Pe := E[h(G)] = E
[
Q

(√
Gξ/σ2

n

)]
(3)

computed under the distribution of G, the number

of good frames. If no collisions occur in the �th

frame with a probability p, and if the occurrences

of collisions in different frames are independent and

identically distributed, then G ∼binomial(Nf , p) as

discussed next. Note that p depends on the number of

chips Nc as well as the number of users Nu.

D. Probability of Good Frames

We define a collision to be the situation when two

waveforms belonging to different users occupy the

same slot in one frame. Collisions result in the erasure

of the desired signal waveform. By construction, the

collisions with a user in different slots occur indepen-

dently.

Proposition 1: As a function of the number of chips

Nc and the number of users Nu,

p = (1 − 1/Nc)Nu−1. (4)

Proof. The probability of no collision, p, is given by

p = P

{(
no collision with user 1

)
∩

· · · ∩
(

no collision with user Nu

)}

= P
(

no collision with user 1
)
·

· · ·P
(

no collision with user Nu

)
=

(
1 − 1

Nc

)
·
(

1 − 1
Nc

)
· · ·

(
1 − 1

Nc

)

=
(

1 − 1
Nc

)Nu−1

.

Suppose that the number of users Nu is some

fraction λ of the number of chips Nc; i.e., Nu = λNc.

Then as Nc becomes large, or equivalently, as Nu

becomes large,

p = (1− λ/Nu)Nu−1 =
(1 − λ/Nu)Nu

1 − λ/Nu
→ e−λ. (5)
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III. ANALYSIS OF Pe

A. Asymptotic Analysis

We are interested in

Pe = E[h(G)] = E
[
Q

(√
Gξ/σ2

n

)]
.

Since G ∼binomial(Nf , p), we can write

Pe = E[h(G)] = E
[
Q

(√
Gξ/σ2

n

)]

=
Nf∑
g=0

Q
(√

gξ/σ2
n

)
P(G = g)

=
Nf∑
g=0

Q
(√

gξ/σ2
n

)
×

(
Nf

g

)
pg(1 − p)Nf−g. (6)

From this and (4), we can analyze Pe as a function of

Nc, Nu, and Nf . To this end, observe that h(g) in (2)

is a bounded, continuous function on [0,∞). Hence, if

Gn converges in distribution to a real-valued random

variable G, then E[h(Gn)] → E[h(G)] [2].

Proposition 2: As a function of the number of users

Nu,

lim
Nu→∞

Pe = E
[
Q

(√
0ξ/σ2

n

)]
= 1/2. (7)

Proof. As the number of users Nu → ∞, we are

certain to have collisions in every frame; i.e., p →
0. In this case, G ∼ binomial(Nf , p) converges in

distribution to the constant random variable 0, and so

E[h(G)] → E[h(0)] = 1/2 as claimed.

Proposition 3: As a function of the number of chips

Nc,

lim
Nc→∞

Pe = E
[
Q

(√
Gξ/σ2

n

)]
= Q

(√
Nfξ/σ2

n

)
. (8)

Proof. As Nc → ∞, p → 1. In this case,

G ∼ binomial(Nf , p) converges in distribution to

the constant random variable Nf , and so E[h(G)] →
E[h(Nf )] as claimed.

Proposition 4: As a function of the number of

frames Nf ,

lim
Nf→∞

Pe → 0. (9)

Proof. The idea of this proof is that as Nf → ∞,

the binomial(Nf , p) random variable G converges in

distribution to the constant random variable ∞. How-

ever since we are not used to working with random

variables that are not finite real valued, we must prove

that in this case E[h(G)] → E[h(∞)] as we would

like. We proceed as follows. Since h(g) → 0 as

g → ∞, given any ε > 0, there is a 0 < δ < ∞ such

that h(g) < ε for all g > δ. Further, since h(g) ≤ 1/2,

we can write

E[h(G)] ≤ E[h(G){I[0,δ](G) + I(δ,∞)(G)}]
≤ (1/2)P(G ≤ δ) + εP(G > δ)
< (1/2)P(G ≤ δ) + ε.

Next,

P(G ≤ δ) =
�δ�∑
g=0

(
Nf

g

)( p

1 − p

)g

(1 − p)Nf

≤
�δ�∑
g=0

Ng
f

g!

( p

1 − p

)g

(1 − p)Nf .

Writing,

Ng
f (1 − p)Nf = exp[g lnNf + Nf ln(1 − p)],

we see that limNf→∞ P(G ≤ δ) → 0. Hence,

lim
Nf→∞

E[h(G)] ≤ ε.

Since ε > 0 is arbitrary, limNf→∞ E[h(G)] = 0 and

the proposition is proved.

The limits established in the three propositions are

illustrated in Figs. 2–4 in Section IV.

B. Analysis of Pe Using Craig’s Formula

Although Pe can be computed directly from (6), we

can also give a simple upper bound and an integral

formula that avoids computing factorials.

We begin with Craig’s formula [4],

Q(x) =
1
π

∫ π/2

0

exp
( −x2

2 sin2 t

)
dt. (10)

This immediately gives the inequality

Q(x) ≤ 1
2
e−x2/2. (11)

In both formulas, set x =
√

Gξ/σ2
n and take expec-

tations. This yields both

Pe =
1
π

∫ π/2

0

E
[

exp
(−Gξ/σ2

n

2 sin2 t

)]
dt

and

Pe ≤ 1
2

E[e−Gξ/2σ2
n ]. (12)

Now, since G ∼binomial(Nf , p), its moment generat-

ing function is

M(θ) := E[eθG] = [(1 − p) + peθ]Nf . (13)

We thus have

Pe =
1
π

∫ π/2

0

M

(−ξ/σ2
n

2 sin2 t

)
dt (14)

and

Pe ≤ 1
2
M(−ξ/2σ2

n) =
1
2
[(1 − p) + pe−ξ/2σ2

n ]Nf .

(15)

To conclude, we make the change of variable y = sin t
in (14) to get

Pe =
1
π

∫ 1

0

M

(−ξ/σ2
n

2y2

)
dy√
1 − y2

=
1
2π

∫ 1

−1

M

(−ξ/σ2
n

2y2

)
dy√
1 − y2

,

916



which is ideally suited to Chebyshev–Gauss quadra-

ture [7, p. 889, formula 25.4.38]; i.e.,

Pe ≈ π

K

K∑
k=1

M

(−ξ/σ2
n

2y2
k

)
, yk := cos

[
(2k − 1)π

2K

]
.

(16)

When K is even, we can exploit symmetry to reduce

computation by doubling the sum from 1 to K/2. A

similar reduction can be obtained when K is odd,

though care must be taken to use the limiting value

M = (1 − p)Nf when yk = 0.

C. Analysis of Pe Using the Poisson Approximation

Recall that (15) was obtained by computing the

right-hand side of (12) using the true binomial distri-

bution of G. Here we approximate the right-hand side

of (12) by treating G as Poisson with parameter pNf .

In this case, the right-hand side of (12) is expressed

in terms of the Poisson moment generating function

exp[pNf (eθ − 1)]. Thus,

Pe ≈ 1
2

exp[pNf (e−ξ/2σ2
n − 1)]. (17)

Note that this is also immediate from (15) if we

take (13) and note that for large Nf with pNf ap-

proximately constant,

[(1−p)+peθ]Nf =
[
1+

pNf (eθ − 1)
Nf

]Nf

∼ epNf (eθ−1).

(18)

D. Analysis of Pe Using the Central Limit Theorem

In the previous subsection, we approximated the

binomial G in (12) with a Poisson. Here we use the

central limit theorem to approximate the binomial G
in (12) as a Gaussian with mean m := E[G] = Nfp
and variance σ2 := Nfp(1 − p). In this case, the

right-hand side of (12) is expressed in terms of the

Gaussian moment generating function eθm+θ2σ2/2. We

thus have the approximation

Pe ≈ 1
2
eθpNf +θ2Nf p(1−p)

∣∣∣∣
θ=−ξ/2σ2

n

. (19)

E. Small SNR

Proposition 5: As the signal-to-noise ratio ξ/σ2
n

goes to zero, (15), (17), and (19) are all close to

1
2

exp[−pNfξ/2σ2
n]. (20)

Proof. In (15), put x = ξ/2σ2
n and use the approxima-

tion e−x ≈ 1 − x to write

[(1 − p) + pe−x]Nf ≈ [(1 − p) + p(1 − x)]Nf

= [1 − px]Nf

= exp[Nf ln(1 − px)]
≈ exp[−pNfx],

where the last step uses the approximation ln t ≈ t −
1 for t ≈ 1. In (17), use e−x − 1 ≈ −x to write

exp[pNf (e−x − 1)] ≈ exp[−pNfx]. In (19), observe

that if the signal-to-noise ratio is small, then so is θ.

For small θ, we use the approximation θ2 ≈ 0. Then

eθpNf +θ2Nf p(1−p) ≈ eθpNf .

Since θ = −x, the right-hand side is just e−pNf x as

required.

IV. NUMERICAL RESULTS

This section compares the various formulae com-

puted in the paper. Fig. 2 simulates the error proba-

bility, Pe versus number of users, Nu. Observe that

while Nu → ∞, the average error probability curves

converge to the asymptotic value, zero. Intuitively,

when the number of users in the system increases, the

interference (a collision in every frame) will increase

and this will impact the error probability. The number

of chips, Nc, and number of frames, Nf , are 100 and

50 respectively. SNR is chosen to be 10 dB for this

plot.

In Fig. 3, error probability, Pe, is plotted versus

number of chips, Nc as a function of Nu. Observe

that while Nu increases and Nc → ∞, the average

error probability curves converge to the asymptotic

value. When the number of chips Nc becomes very

large, then no collisions occur in the �th frame with a

probability 1. Here Nf is chosen to be 10 and SNR

is set at 10 dB.

In Fig. 4, the average error probability, Pe, is plotted

versus number of frames, Nf . Nc is chosen to be

100. Observe that as the number of transmitted frames

increases Pe drops to its asymptotic value, 0. As the

number of users in the system increases, the error

probability takes a longer time to reach its asymptotic

value, 0. SNR was chosen to be 10 dB for this plot.

Error probability, Pe, versus number of frames, Nf ,

is plotted in Fig. 5. The average probability of error

(6), is plotted against the approximate formulas (upper

bounds on bit-error probability) using Craig’s formula

(10), Poisson approximation (17), and central limit

theorem (19). For this plot, Nc, Nf , and Nu were

chosen to be 100, 25, and 100. The SNR is good at

30 dB. The bound based on the Craig’s formula is

more tight compared with the other two bounds, as a

function of the number of frames, Nf .

Error probability, Pe, versus p is plotted in Fig. 6.

For this plot, Nc, Nf , and Nu were chosen to be 50,

10, and 10000. The SNR was chosen to be 25 dB.

From these plots, it can be inferred that the bounds

are quite good for lower values of p. For lower values

of p, among the three bounds, the one based on Craig’s

formula serves as the tightest bound.

In Fig. 7, we show that the three upper bounds on

the error probability derived in the paper converge for

low values of SNR.

V. CONCLUSIONS

Two closed-form expressions for the bit-error proba-

bility of an ultra-wideband system, without using com-

putationally intensive methods have been developed
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Fig. 2. Error probability, Pe versus number of users, Nu.

Fig. 3. Error probability, Pe versus number of chips, Nc as a
function of Nu.

Fig. 4. The average error probability, Pe is plotted versus number
of frames, Nf . Nu was chosen to be 60.

Fig. 5. Error probability, Pe versus Nf .

Fig. 6. Error probability, Pe versus p.

Fig. 7. The average error probability, Pe is plotted versus number
of frames, Nf . SNR is chosen to be = 1 dB.

in this paper. Asymptotic formulas have been derived

by letting various system parameters go to infinity

and using known mathematical formulae. Easy-to-use

upper bounds for error probability analysis have been

developed in this paper. The bound using Craig’s

formula serves as the tightest bound (among the three

bounds) in a dense multi-user environment at reason-

able SNR values. However, at low SNR values, the

three bounds are quite similar. Hence, our method will

be a good starting point for researchers needing to

compute the average bit error probability in the course

of the analysis and design of UWB systems.
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