10 1. Find the function y(n) that satisfies

$$y(n+2) + 4y(n+1) + 3y(n) = 2^n u(n), y(0) = 0, y(1) = 1.$$

Use the method of z transforms. There is a table on the last page of the exam.

- 2. For each of the following systems, determine whether it is linear or nonlinear:
 - (a) (Tx)(n) = n.
 - (b) $(Tx)(n) = \begin{cases} x(n), & \text{if } |x(n)| \leq 10, \\ 0, & \text{otherwise.} \end{cases}$
 - (c) $(Tx)(n) = \sum_{k=-\infty}^{\infty} \left(\frac{1}{1+|k|}\right)^2 x(n-k).$
 - (d) $(Tx)(n) = \ln\left(\prod_{k=0}^{3} e^{x(n+k)}\right)$.
 - (e) $(Tx)(n) = \begin{cases} x(n), & \text{for } n = 0, \dots, 10, \\ 0, & \text{otherwise.} \end{cases}$
- 3. Let $X(\omega)$ be the discrete-time Fourier transform (DTFT) of x(n). Suppose $X(\omega) = \omega$ for $-\pi \le \omega \le \pi$. Find x(n) for all n. Evaluate all integrals.
- 4. For each of the following systems, determine whether it is causal or noncausal:
 - (a) $(Tx)(n) = \sum_{k=-1}^{1} 2^{-k} \cos(x(n-k-1)).$
 - (b) $(Tx)(n) = \sum_{k=-1}^{1} 3^{-k} |x(n \cdot k)|^2$.
 - (c) $(Tx)(n) = x(0) + \sum_{k=-\infty}^{n} 2^{k-n}x(k)$.
 - (d) $(Tx)(n) = \prod_{k=0}^{3} x(n-k)$.
 - (e) $(Tx)(n) = \sum_{k=-\infty}^{\infty} 7^{-|n-k|} x(k) u(k)$.
- **/0** 5. In Problem 3, |x(n)| = 1/n for $n \neq 0$. Use this fact to find the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$. JUSTIFY YOUR ANSWER!
- 6. Consider the LTI system $(Tx)(n) = \sum_{k=0}^{\infty} \frac{x(n-k)}{\ln([2+k]^2)}$

Is this system stable? JUSTIFY YOUR ANSWER! Hint: $\ln \theta < \theta$ for $\theta > 0$.

Page 3

- 7. Let h(t) be the impulse response of a continuous-time LTI system. Let $H(\omega)$ denote the corresponding transfer function.
 - (a) Let x(t) have period T. If y(t) is the system output,

Exam 3

- (i) show that y(t) also has period T;
- (ii) express the complex Fourier coefficients of y, say y_n , in terms of $H(\cdot)$ and x_n , where x_n is the *n*th Fourier coefficient of x(t).

show that the output of the system

is $y(t) = \lambda \sin(t)$ for some constant λ . Do NOT try to find λ .