Closed book. Closed Notes. No Calculators.

1. Compute the convolution $(h * x)(n)$ for all n if $x(k)=\delta(k-1)+\delta(k-2)$ and $h(k)$ is shown below:

2. Consider the system $(A x)(n)=\frac{x(n)-x(n-1)}{1+|n+1|}$.

S (a) Is A linear (Yes/No)?
(b) Is A time invariant (Yes/No)?
(c) Is A causal (Yes/No)?
(d) Is A stable (Yes/No)?
3. Consider the system $(A x)(n)=\frac{x(n+1)+x(n-1)}{2}$. Find the impulse response $h(n)$ and the transfer function $H(\Omega)$. Evaluate all sums in closed form, and express $H(\Omega)$ as a real-valued function of Ω.
4. Consider the following system:

where x is a continuous-time, bandlimited signal with cut-off frequency ω_{c}, and p is periodic with period T. Suppose $H(\omega)$ is the ideal lowpass filter,

For what positive values of T will $y(t)=\lambda x(t)$ for some constant λ ? Justify your answer, and find λ if p is the triangle wave

5. Let $x(k)$ and $y(k)$ be discrete-time signals.
(a) If $z(n)=\sum_{k=-\infty}^{\infty} x(n-k) y(k)$, show that the corresponding DTFTs satisfy $Z(\Omega)=X(\Omega) Y(\Omega)$.
(b) Find all values of the number E such that it is possible to find a discrete-time function $x(n)$ with both of the following two properties:

$$
\begin{align*}
\sum_{k=-\infty}^{\infty} x(n-k) x(k) & =x(n), \quad \text { for all } n \tag{i}\\
\sum_{n=-\infty}^{\infty}|x(n)|^{2} & =E \tag{ii}
\end{align*}
$$

JUSTIFY YOUR ANSWER!!!

