20

20

10

Closed book. Closed Notes. No Calculators.

1. Compute the convolution (h * x)(n) for all n if $x(k) = \delta(k-1) + \delta(k-2)$ and h(k) is shown below: h(k)

2. Consider the system
$$(Ax)(n) = \frac{x(n) - x(n-1)}{1 + |n+1|}$$

- $\begin{cases} \text{(a) Is } A \text{ linear (Yes/No)?} \\ \text{(b) Is } A \text{ time invariant (Yes/No)?} \\ \end{array}$
- $\begin{cases} (c) \text{ Is } A \text{ causal (Yes/No)?} \\ (d) \text{ Is } A \text{ stable (Yes/No)?} \end{cases}$
- 3. Consider the system $(Ax)(n) = \frac{x(n+1) + x(n-1)}{2}$. Find the impulse response h(n) and 20 the transfer function $H(\Omega)$. Evaluate all sums in closed form, and express $H(\Omega)$ as a real-valued function of Ω .
 - 4. Consider the following system:

$$\chi(\tau) \rightarrow \chi \xrightarrow{Z(\tau)} H(\omega) \rightarrow y(t)$$

where x is a continuous-time, bandlimited signal with cut-off frequency ω_c , and p is periodic with period T. Suppose $H(\omega)$ is the ideal lowpass filter, $H(\omega)$

For what positive values of T will $y(t) = \lambda x(t)$ for some constant λ ? Justify your answer, 11 P(T) and find λ if p is the triangle wave

- 5. Let x(k) and y(k) be discrete-time signals.
- (a) If $z(n) = \sum_{k=-\infty}^{\infty} x(n-k)y(k)$, show that the corresponding DTFTs satisfy $Z(\Omega) = X(\Omega)Y(\Omega)$. 10
 - (b) Find all values of the number E such that it is possible to find a discrete-time function x(n) with both of the following two properties:

(i)
$$\sum_{k=-\infty}^{\infty} x(n-k)x(k) = x(n), \text{ for all } n,$$

(ii)
$$\sum_{n=-\infty}^{\infty} |x(n)|^2 = E.$$

JUSTIFY YOUR ANSWER!!!