ECE 729

Decoders and Continuous Channels Subject to an Input Power Constraint

1. Decoders for General Channels

Let B_{1}, \ldots, B_{N} be subsets of some space \boldsymbol{Y}. Then put

$$
\begin{aligned}
F_{1} & :=B_{1} \\
F_{i} & :=B_{i} \cap B_{i-1}^{c} \cap \cdots \cap B_{1}^{c}, \quad i=2, \ldots, N .
\end{aligned}
$$

Also put

$$
F:=\left(\bigcup_{i=1}^{N} F_{i}\right)^{c}=F_{1}^{c} \cap \cdots \cap F_{N}^{c}
$$

and note that $F \cap F_{i}=\varnothing$ for $i=1, \ldots, N$. In addition,

$$
F_{1} \cup \cdots \cup F_{N} \cup F=\boldsymbol{Y}
$$

and so F_{1}, \ldots, F_{N} and F constitute a partition of \boldsymbol{Y}.
Consider the formula

$$
\varphi(\boldsymbol{y}):=\sum_{i=1}^{N} i I_{F_{i}}(\boldsymbol{y})+N I_{F}(\boldsymbol{y})
$$

Then for $i=1, \ldots, N-1, \varphi(y)=i \Leftrightarrow \boldsymbol{y} \in F_{i}$, and thus

$$
\begin{equation*}
\varphi(\boldsymbol{y}) \neq i \Leftrightarrow \boldsymbol{y} \in F_{i}^{c} . \tag{1}
\end{equation*}
$$

Since $\varphi(y)=N \Leftrightarrow \boldsymbol{y} \in F_{N} \cup F$, we have

$$
\begin{equation*}
\varphi(\boldsymbol{y}) \neq N \Leftrightarrow \boldsymbol{y} \in F_{N}^{c} \cap F^{c} \subset F_{N}^{c} . \tag{2}
\end{equation*}
$$

Hence, (1) holds even when $i=N$. To conclude, observe that $F_{1}^{c}=B_{1}^{c}$, and for $2 \leq i \leq N$,

$$
F_{i}^{c}=B_{i}^{c} \cup\left(\bigcup_{j<i} B_{j}\right)
$$

We can now write for all $i=1, \ldots, N$,

$$
\begin{equation*}
B_{i}^{c} \subset F_{i}^{c} \subset B_{i}^{c} \cup\left(\bigcup_{j \neq i} B_{j}\right) \tag{3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\{\boldsymbol{y}: \varphi(\boldsymbol{y}) \neq i\} \subset B_{i}^{c} \cup\left(\bigcup_{j \neq i} B_{j}\right), \quad \underline{\underline{i=1, \ldots, N}} \tag{4}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\{\boldsymbol{y}: \varphi(\boldsymbol{y}) \neq i\}=F_{i}^{c} \supset B_{i}^{c}, \quad \xlongequal{i=1, \ldots, N-1} \tag{5}
\end{equation*}
$$

2. Continuous Channels Subject to an Input Power Constraint

Let A_{n} be as in the notes and put

$$
B_{i}:=\left\{\boldsymbol{y}:\left(\boldsymbol{x}_{i}, \boldsymbol{y}\right) \in A_{n} \text { and }\left\|\boldsymbol{x}_{i}\right\|^{2} \leq n P\right\}
$$

and define the F_{i} and φ as above. Then

$$
\begin{equation*}
B_{i}^{c}=\left\{\boldsymbol{y}:\left(\boldsymbol{x}_{i}, \boldsymbol{y}\right) \notin A_{n}\right\} \cup\left\{\boldsymbol{y}:\left\|\boldsymbol{x}_{i}\right\|^{2}>n P\right\} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{j} \subset\left\{\boldsymbol{y}:\left(\boldsymbol{x}_{j}, \boldsymbol{y}\right) \in A_{n}\right\} \tag{7}
\end{equation*}
$$

In addition, note from (6) that

$$
\begin{equation*}
B_{i}^{c} \supset\left\{\boldsymbol{y}:\left\|\boldsymbol{x}_{i}\right\|^{2}>n P\right\} \tag{8}
\end{equation*}
$$

We first use (4) to write

$$
\begin{aligned}
\int_{\{y: \varphi(\boldsymbol{y}) \neq i\}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y} & \leq \int_{B_{i}^{c} \cup\left(\cup_{j \neq i} B_{j}\right)} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y} \\
& \leq \int_{B_{i}^{c}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y}+\sum_{j \neq i} \int_{B_{j}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y}
\end{aligned}
$$

Next, by (6),

$$
\begin{aligned}
\int_{B_{i}^{c}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y} \leq & \underbrace{\int_{\left\{\boldsymbol{y}:\left\|\boldsymbol{x}_{i}\right\|^{2}>n P\right\}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y}}_{=: \eta\left(\boldsymbol{x}_{i}\right)} \\
& +\underbrace{\int_{\left\{\boldsymbol{y}:\left(\boldsymbol{x}_{i}, \boldsymbol{y}\right) \in A_{n}\right\}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y}}_{=: \alpha\left(\boldsymbol{x}_{i}\right)}
\end{aligned}
$$

and by (7),

$$
\int_{B_{j}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y} \leq \int_{\left\{y:\left(\boldsymbol{x}_{j}, \boldsymbol{y}\right) \in A_{n}\right\}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y}=: \theta\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

We can now write

$$
\int_{\{y: \varphi(y) \neq i\}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y} \leq \eta\left(\boldsymbol{x}_{i}\right)+\alpha\left(\boldsymbol{x}_{i}\right)+\sum_{j \neq i} \theta\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
$$

where η, α, and θ are as in the notes.
Let $0<\lambda<1 / 2$ and $\Delta R>0$ be given. Suppose

$$
\frac{\log N}{n}>R-\Delta R / 2
$$

and that from $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$, we have at least $\lfloor N / 2\rfloor$ codewords that satisfy

$$
\begin{equation*}
\int_{\{y: \varphi(\boldsymbol{y}) \neq i\}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y}<2 \lambda<1 \tag{9}
\end{equation*}
$$

If $i \neq N$, we claim that $\left\|\boldsymbol{x}_{i}\right\|^{2} \leq n P$. Otherwise, the set on the right in (8) is equal to \mathbb{R}^{n}, and then by (5),

$$
\int_{\{\boldsymbol{y}: \varphi(\boldsymbol{y}) \neq i\}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y} \geq \int_{\mathbb{R}^{n}} w^{n}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i}\right) d \boldsymbol{y}=1
$$

which contradicts (9). Hence, there are at least $\lfloor N / 2\rfloor-1$ codewords that satisfy (9) and $\left\|\boldsymbol{x}_{i}\right\|^{2} \leq n P$. This does not affect the rate of the code since

$$
\begin{aligned}
\frac{\log (\lfloor N / 2\rfloor-1)}{n} & \geq \frac{\log (\{N / 2-1\}-1)}{n}=\frac{\log (N / 2-2)}{n} \\
& \geq \frac{\log (N / 2-N / 4)}{n}=\frac{\log (N / 4)}{n} \\
& =\frac{\log N}{n}-\frac{\log 4}{n} \\
& >(R-\Delta R / 2)-\frac{\log 4}{n} \geq R-\Delta R
\end{aligned}
$$

for large n.

