We employ the random coding argument as follows. Write the error probability in (6.3) as a function of the codewords,

\[e_n(x_1, \ldots, x_N) := \frac{1}{N} \sum_{i=1}^{N} W_n(\{y : \varphi(y) \neq i\} | x_i). \]

If we can find a random codebook \((X_1, \ldots, X_N)\) such that \(E[e_n(X_1, \ldots, X_N)] < \lambda\), then there must be at least one codebook \((x_1, \ldots, x_N) \in (X^n)^N\) with \(e_n(x_1, \ldots, x_N) < \lambda\).

For later use, note that

\[
E[e_n(X_1, \ldots, X_N)] = E\left[\frac{1}{N} \sum_{i=1}^{N} W_n(\{y : \varphi(y) \neq i\} | X_i) \right] = \frac{1}{N} \sum_{i=1}^{N} E\left[W_n(\{y : \varphi(y) \neq i\} | X_i) \right].
\]

Our approach is to obtain a bound on \(E[W_n(\{y : \varphi(y) \neq i\} | X_i)]\) that does not depend on \(i\). To this end, we first compute the conditional expectation

\[
E[W_n(\{y : \varphi(y) \neq i\} | X_i)] = \sum_{x} E[W_n(\{y : \varphi(y) \neq i\} | X_i, X_i = x)] P(X_i = x).
\]

6.4.3. Rates of Reduced Codebooks

An Underlying Observation

Suppose \(\theta_1, \ldots, \theta_N\) are nonnegative numbers whose numerical average is less than \(\lambda\). Then more than half of the \(\theta_i\) are individually less than \(2\lambda\). To establish this claim, we first express it in symbolic terms. Suppose that

\[
\frac{1}{N} \sum_{i=1}^{N} \theta_i < \lambda,
\]

\(^b\) In general, the decoder \(\varphi\) is defined in terms of the codewords. However, to keep the notation from getting out of hand, we just write \(\varphi(y)\) instead of the more explicit \(\varphi_{x_1, \ldots, x_N}(y)\).
where $0 < \lambda < \infty$. Put $G := \{ i : \theta_i < 2\lambda \}$. We show that $|G| > N/2$. Write

$$
\lambda > \frac{1}{N} \sum_{i=1}^{N} \theta_i = \frac{1}{N} \left(\sum_{i \in G^c} \theta_i + \sum_{i \in G} \theta_i \right) \geq \frac{1}{N} \sum_{i \in G^c} \theta_i \geq \frac{1}{N} \sum_{i \in G^c} 2\lambda = \frac{2\lambda}{N} |G^c|.
$$

It follows that $|G^c| < N/2$, and then $|G| = N - |G^c| > N - N/2 = N/2$.

Putting It All Together

Suppose we can find a random codebook (X_1, \ldots, X_N) with $\mathbb{E}[e_n(X_1, \ldots, X_N)] < \lambda$. Then by the random coding argument, there is a codebook (x_1, \ldots, x_N) such that

$$
e_n(x_1, \ldots, x_N) = \frac{1}{N} \sum_{i=1}^{N} W_n(\{y : \varphi(y) \neq i\} | x_i) < \lambda.
$$

By the observation above, there is a subset G of $\{1, \ldots, N\}$ such that $|G| > N/2$ and

$$W_n(\{y : \varphi(y) \neq i\} | x_i) < 2\lambda, \quad i \in G.$$

By the throwing away the codewords x_i for $i \notin G$, and using the construction in Section 6.4.1 we have an encoder f_G and decoder φ_G such that

$$W_n(\{y : \varphi_G(y) \neq i\} | x_i) < 2\lambda, \quad i \in G. \quad (6.9)$$

Note that the rate of this modified code satisfies

$$\frac{\log |G|}{n} > \frac{\log N/2}{n} = \frac{\log N}{n} - \frac{\log 2}{n}.$$

Hence, even though we discard half of the original codewords, the rate of the modified code is nearly $(\log N)/n$ for large n.

CHAPTER 7

Typicality Decoding

The success of the asymptotic equipartition property (AEP) in summarizing the key concepts used to prove Shannon’s Source Coding Theorem suggests the following extension.

7.1. Joint Typicality

When $P_{XY}(x,y)$ is any joint probability mass function on $X \times Y$, we use the notation

$$P_X(x) := \sum_y P_{XY}(x,y) \quad \text{and} \quad P_Y(y) := \sum_x P_{XY}(x,y)$$

50
for the marginal probability mass functions on X and Y, respectively. Next, for $x = (x_1, \ldots, x_n) \in X^n$ and $y = (y_1, \ldots, y_n) \in Y^n$, we put

$$P^n_{XY}(x, y) := \prod_{k=1}^{n} P_{XY}(x_k, y_k).$$

The reader should verify that the marginals on X^n and Y^n satisfy

$$\sum_y P^n_{XY}(x, y) = \prod_{k=1}^{n} P_X(x_k) =: P^n_X(x) \quad \text{and} \quad \sum_x P^n_{XY}(x, y) = \prod_{k=1}^{n} P_Y(y_k) =: P^n_Y(y).$$

Given $\varepsilon > 0$, we say that x and y are jointly typical if pair (x, y) belongs to the set

$$A_n := \left\{(x, y) \in X^n \times Y^n : \left| \frac{1}{n} \log \frac{1}{P^n_X(x)} - H(P_X) \right| \leq \varepsilon, \left| \frac{1}{n} \log \frac{1}{P^n_Y(y)} - H(P_Y) \right| \leq \varepsilon, \text{and} \left| \frac{1}{n} \log \frac{1}{P^n_{XY}(x, y)} - H(P_{XY}) \right| \leq \varepsilon \right\}.$$

By writing $|t| \leq \varepsilon$ as $-\varepsilon \leq t \leq \varepsilon$, it is easy to show that

$$A_n := \left\{(x, y) \in X^n \times Y^n : \exp(-n[H(P_X) + \varepsilon]) \leq P^n_X(x) \leq \exp(-n[H(P_X) - \varepsilon]), \exp(-n[H(P_Y) + \varepsilon]) \leq P^n_Y(y) \leq \exp(-n[H(P_Y) - \varepsilon]),\text{ and } \exp(-n[H(P_{XY}) + \varepsilon]) \leq P^n_{XY}(x, y) \leq \exp(-n[H(P_{XY}) - \varepsilon]) \right\}.$$

We thus have upper and lower bounds on the marginal probabilities $P^n_X(x)$ and $P^n_Y(y)$ and on the joint probabilities $P^n_{XY}(x, y)$.

7.1.1. Mutual Information

In proving the joint AEP, the expression $H(P_X) + H(P_Y) - H(P_{XY})$ arises several times. Before analyzing this expression, it is convenient to introduce the following notation. If p and q are pmfs on X and Y, respectively, then $p \times q$ is the pmf on $X \times Y$ defined by

$$(p \times q)(x, y) := p(x)q(y).$$

Now observe that

$$H(P_X) + H(P_Y) - H(P_{XY}) = \mathbb{E}[-\log P_X(X)] + \mathbb{E}[-\log P_Y(Y)] - \mathbb{E}[-\log P_{XY}(X, Y)].$$
\[E \left[\log \frac{P_{XY}(X,Y)}{P_X(X)P_Y(Y)} \right] = D(P_{XY} \parallel P_X \times P_Y), \]

where \(D \) is the Kullback–Leibler informational divergence or relative entropy. We call \(I(X \land Y) := I(P_{XY}) := E \left[\log \frac{P_{XY}(X,Y)}{P_X(X)P_Y(Y)} \right] = \sum_x \sum_y P_{XY}(x,y) \log \frac{P_{XY}(x,y)}{P_X(x)P_Y(y)} \)

the (average) mutual information between \(X \) and \(Y \).

Several properties of mutual information (and entropy) are readily apparent. First, because mutual information can be expressed as a divergence, we see that \(I(X \land Y) \geq 0 \), with equality if and only if \(X \) and \(Y \) are independent. Second,

\[H(XY) \leq H(X) + H(Y), \]

with equality if and only if \(X \) and \(Y \) are independent. Third,

\[I(X \land Y) = H(Y) - H(Y|X) = H(X) - H(X|Y), \]

from which it follows that

\[H(X) \geq H(X|Y). \]

Since entropy is a measure of uncertainty, this last property is summarized by saying, “conditioning reduces uncertainty.”

7.1.2. The Joint Asymptotic Equipartition Property

Theorem 7.1 (Joint Asymptotic Equipartition Property (Joint AEP)). The set of jointly typical pairs has small cardinality in the sense that

\[|A_n| \leq \exp(n[H(P_{XY}) + \varepsilon]). \]

For large \(n \), the set has high \(P_{XY}^n \) probability in the sense that

\[\lim_{n \to \infty} P_{XY}^n(A_n) = 1. \]

It then follows that for large \(n \),

\[|A_n| \geq (1 - \varepsilon) \exp(n[H(P_{XY}) - \varepsilon]). \]

\(^a\) Many authors write \(I(X;Y) \) instead of \(I(X \land Y) \).
If $Q_n(x, y) := P^n_X(x)P^n_Y(y)$, then

$$Q_n(A_n) \leq \exp(-n[I(P_{XY}) - 3\varepsilon]),$$

and for sufficiently large n,

$$Q_n(A_n) \geq (1 - \varepsilon) \exp(-n[I(P_{XY}) + 3\varepsilon]).$$