ECE 729, Lec. 1
 Exam 1
 20 March 2001

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may use a calculator.

Some Formulas

- The \log inequality:

$$
\log \theta \leq(\log e)(\theta-1)
$$

- The binary entropy function is defined by

$$
h(\theta):=-[\theta \log \theta+(1-\theta) \log (1-\theta)]
$$

and its derivative is

$$
h^{\prime}(\theta)=-(\log e) \ln \left(\frac{\theta}{1-\theta}\right)
$$

- Average mutual information:

$$
I(X \wedge Y):=\sum_{x} \sum_{y} P_{X Y}(x, y) \log \frac{P_{X Y}(x, y)}{P_{X}(x) P_{Y}(y)} .
$$

- The capacity of the binary symmetric channel (BSC) is $1-h(\varepsilon)$ bits per channel use.

1. [15 pts.] Let $X:=\{1,2,3,4,5,6\}$. The probabilities of points in X are given by

x		$\mathrm{P}(X=x)$
1		0.25
2		0.20
3		0.15
4		0.15
5		0.13
6		0.12

Construct a binary Huffman code, and compute its expected length in bits.
2. Which of the following are true/false? You do NOT need to justify your answer.
(a) $[5$ pts.] $I(X \wedge Z \mid Y) \geq I(Z \wedge Y \mid X)-I(Z \wedge Y)+I(X \wedge Z)$.
(b) $[5$ pts.] $I(X \wedge Y) \geq I(X \wedge Y \mid Z)$.
(c) [5 pts.] $H(X Y Z)-H(X Y) \leq H(X Z)-H(X)$.
3. Consider a binary, memoryless source with $\mathrm{P}\left(X_{n}=1\right)=9 / 10$ and $\mathrm{P}\left(X_{n}=0\right)=1 / 10$.
(a) $[5 \mathrm{pts}$.$] Find the entropy of the source.$
(b) [10 pts.] It is desired to find a block source code of rate $1 / 3$ whose probability of error is less than 0.20 . Can this be done? Justify your answer.
(c) [10 pts.] It is desired to find a block source code of rate $2 / 3$ whose probability of error is less than 0.20 . Can this be done? Justify your answer.
4. [20 pts.] Your company has a large contract to provide a channel code for a BSC with crossover probability $\varepsilon=1 / 8$. System constraints require an $n=255$-bit codeword. The information to be transmitted will be blocks of i.i.d. bits, U_{i}, with $\mathrm{P}\left(U_{i}=1\right)=\mathrm{P}\left(U_{i}=0\right)=1 / 2$. The blocks $\left(U_{1}, \ldots, U_{k}\right)$ will be combined with $n-k$ parity bits to create an n-bit channel codeword. What is the largest value of k that you would consider? Justify your answer.
5. [25 pts.] Consider the discrete memoryless Z channel:

Letting $p=P_{X}(1)$, find p to maximize $I(X \wedge Y)$.

