ECE 729, Lec. 1
Exam 1
Wednesday, 24 March 2004
5-6:15 pm in 2345 EH

100 Points 5 Questions

Justify your answers!
 Be precise!

Closed Book
 Closed Notes

You may use a calculator.

Some Formulas

- The \log inequality:

$$
\log \theta \leq(\log e)(\theta-1)
$$

- The binary entropy function is defined by

$$
h(\theta):=-[\theta \log \theta+(1-\theta) \log (1-\theta)]
$$

and its derivative is

$$
h^{\prime}(\theta)=-(\log e) \ln \left(\frac{\theta}{1-\theta}\right)
$$

- Average mutual information:

$$
I(X \wedge Y):=\sum_{x} \sum_{y} P_{X Y}(x, y) \log \frac{P_{X Y}(x, y)}{P_{X}(x) P_{Y}(y)} .
$$

- The capacity of the binary symmetric channel (BSC) is $1-h(\varepsilon)$ bits per channel use.

1. [15 pts.] Let $X:=\{1,2,3,4,5,6\}$. The probabilities of points in X are given by

x		$\mathrm{P}(X=x)$
		0.30
2		0.25
3		0.20
4		0.10
5		0.08
6		0.07

Construct a ternary Huffman code, and compute its expected length in ternary digits.
2. The source alphabet $\mathrm{X}:=\{a, b, c\}$ is to be encoded using the following two variable-length codes:

$\frac{x}{a}$	code 1		$\frac{x}{a}$
	0	code 2	
b	01	b	10
c	11	c	11

For each code, answer the following questions:
(a) [5 pts.] Is this a prefix code (yes/no)?
(b) [5 pts.] Is this code uniquely decodable (yes/no)?
(c) [10 pts.] It is possible to uniquely decode the infinite sequence of a 0 followed by all 1 s forever, $011111 \cdots$ (yes/no)?
3. A ternary DMS produces 512 symbols/second with $\mathrm{P}\left(U_{n}=0\right)=1 / 6, \mathrm{P}\left(U_{n}=1\right)=1 / 3$, and $\mathrm{P}\left(U_{n}=2\right)=1 / 2$. These symbols are compressed with a source code. The compressed data is communicated over a BSC that operates 1600 times/second. Assume the BSC crossover probability is $\varepsilon=1 / 10$.
(a) $[10 \mathrm{pts}$.$] Find the entropy of the source (in bits/source symbol).$
(b) [5 pts.] Find the capacity of the BSC (in bits/channel use).
(c) [10 pts.] Determine whether or not it is possible to send the source information reliably over the channel with arbitrarily small probability of error. Justify your answer.
4. Let X, S, Y, and T have joint pmf of the form

$$
P_{X S Y T}(x, s, y, t)=r(x, s) W(y \mid x) V(t \mid s) .
$$

Determine whether or not the following are true or false. Circle your answer and: if the statement is true, derive it; if the statement is false, briefly explain why.
(a) $[10$ pts.] $H(Y T \mid X S)=H(Y \mid X)+H(T \mid S)$.
(b) [10 pts.] $I(X S \wedge Y T) \leq I(X \wedge Y)+I(S \wedge T)$.
5. [20 pts.] Let X and Y be the binary-valued input and output of a DMC defined as follows. Let X, N_{1}, and N_{2} be independent $\{0,1\}$-valued random variables, and put $Y:=X \oplus N_{1} \oplus N_{2}$, where \oplus denotes mod-2 addition (exclusive or):

$$
0 \oplus 0=0, \quad 1 \oplus 0=1, \quad 0 \oplus 1=1, \quad \text { and } \quad 1 \oplus 1=0 .
$$

If $\mathrm{P}\left(N_{1}=1\right)=\mathrm{P}\left(N_{2}=1\right)=\varepsilon$, and if $W(y \mid x):=\mathrm{P}(Y=y \mid X=x)$, find the capacity of the DMC W.

