ECE 729, Lec. 1
Final Exam
Friday, 12 May 2006
7:45-9:45 am
3418 EH

100 Points

Justify your answers!

Be precise!

Closed Book
 Open Notes

- Exponential density with parameter $\mu: f(\gamma)=\mu e^{-\mu \gamma}, \gamma \geq 0$.
- The binary entropy function: $h(\theta):=-[\theta \log \theta+(1-\theta) \log (1-\theta)]$.

1. Background: Consider a discrete-time, additive white Gaussian noise channel subject to block fading. This means that when a codeword $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ is transmitted, the k th received channel output symbol is $Y_{k}=\sqrt{G} x_{k}+Z_{k}$, where the Z_{k} are i.i.d. zero-mean Gaussians with common variance σ^{2}. If the receiver knows the value of G, then the codeword constraint

$$
\frac{1}{n} \sum_{k=1}^{n} x_{k}^{2} \leq A \quad \text { is equivalent to } \quad \frac{1}{n} \sum_{k=1}^{n}\left(\sqrt{G} x_{k}\right)^{2} \leq G A
$$

and so the capacity is $\frac{1}{2} \log \left(1+G A / \sigma^{2}\right)$. If we put

$$
C(\gamma):=\frac{1}{2} \log (1+\gamma)
$$

then the capacity is $C\left(G A / \sigma^{2}\right)$. However, since the fading coefficient \sqrt{G} is random, the signal-to-noise ratio (SNR) $\Gamma:=G A / \sigma^{2}$ is also random. If the SNR falls below a threshold γ, we say that an outage occurs. The parametric curve

$$
(\mathrm{P}(\Gamma \leq \gamma), C(\gamma)), \quad \gamma \geq 0
$$

expresses the capacity $c=C(\gamma)$ as a function of the outage probability $p=\mathrm{P}(\Gamma \leq \gamma)$.
Question: Find a formula to express the capacity c as a function of the outage probability p if Γ has an exponential density with parameter μ (Rayleigh fading). Your formula should involve only p and μ.
2. Consider the d-dimensional, discrete-time Gaussian channel defined as follows. The response of the channel to an input symbol $\boldsymbol{x} \in \mathbb{R}^{d}$ is

$$
\boldsymbol{Y}=\boldsymbol{x}+\boldsymbol{Z}
$$

where \boldsymbol{Z} is a d-dimensional, zero-mean Gaussian random vector with i.i.d. components such that $\mathrm{E}\left[\|\boldsymbol{Z}\|^{2}\right]=\sigma^{2}$. In other words, \boldsymbol{Z} has covariance matrix $\left(\sigma^{2} / d\right) I$, where I is the d-dimensional identity matrix. The channel is subject to the following cost constraint. Every codeword $\boldsymbol{x}=$ $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in\left(\mathbb{R}^{d}\right)^{n}$ must satisfy

$$
\frac{1}{n} \sum_{k=1}^{n}\left\|x_{k}\right\|^{2} \leq A
$$

The capacity of this channel is

$$
C(A)=\max _{X: E\left[\|\boldsymbol{X}\|^{2}\right] \leq A} I(\boldsymbol{X} \wedge \boldsymbol{Y}),
$$

where it is understood that $\boldsymbol{Y}=\boldsymbol{X}+\boldsymbol{Z}$ with \boldsymbol{X} and \boldsymbol{Z} independent. Find $C(A)$ in terms of A, σ^{2}, and d.

Remarks: (i) When the base of the logarithm is two, the capacity has units of bits per channel use. However, since each channel use transmits d real numbers, $C(A) / d$ is the capacity in bits per real number transmitted.
(ii) The case $d=2$ can be interpreted as the complex scalar Gaussian channel in which the real and imaginary parts of the noise are independent and have variance $\sigma^{2} / 2$. In this case, $C(A)$ has units of bits per complex number transmitted.
3. Recall that a discrete memoryless broadcast channel that takes an input $x \in \mathrm{X}$ and generates outputs $y \in \mathrm{Y}$ and $z \in \mathrm{Z}$ is completely determined by the two transition probabilities $w(y \mid x)$ and $\tilde{w}(z \mid x)$. The binary symmetric broadcast channel arises when w is a binary symmetric channel (BSC) with crossover probability ε and \tilde{w} is a BSC with crossover probability $\tilde{\varepsilon}$ as in the following diagram:

Assuming $0 \leq \varepsilon<1 / 2$ and $\varepsilon \leq \tilde{\varepsilon}$, show that this channel is always degraded; i.e., find the value of α so that the cascade

is such that if $P_{X Y Z}(x, y, z)=q(z \mid y) w(y \mid x) p(x)$ for any $p(x)$, then $\mathrm{P}(Z=1 \mid X=0)=\mathrm{P}(Z=0 \mid X=$ $1)=\tilde{\varepsilon}$.
4. Consider the following rate-distortion problem. Let $X=\{0,1\}$ and $Y=\{0,1,2\}$. Define the distortion function $d(x, y)$ by

$$
\begin{aligned}
& d(0,0)=d(1,1)=0 \\
& d(0,2)=d(1,2)=1 \\
& d(0,1)=d(1,0)=\infty .
\end{aligned}
$$

In other words, there is no cost for representing $x=0$ by $y=0$ or $x=1$ by $y=1$. There is cost one for representing either $x=0$ or $x=1$ by $y=2$. There is infinite cost for representing $x=0$ by $y=1$ or $x=1$ by $y=0$. If the source pmf is $p(0)=p(1)=1 / 2$, find

$$
R(D)=\inf _{W: \mathrm{E}[d(X, Y)] \leq D} I(X \wedge Y),
$$

where it is understood that $P_{X Y}(x, y)=p(x) W(y \mid x)$. Hint: Start by computing $\mathrm{E}[d(X, Y)]$. Use the convention

$$
\lambda \cdot \infty= \begin{cases}0, & \lambda=0 \\ \infty, & \lambda>0\end{cases}
$$

