ECE 729, Lec. 1
 Exam 1
 28 February 1995

100 Points

Justify your answers!
Be precise!

Closed book. Closed Notes. No Calculators.

1. [20 pts.] Let $\mathrm{X}=\{1,2,3,4\}$, and suppose $\mathrm{P}(X=1)=1 / 3, \mathrm{P}(X=2)=1 / 3, \mathrm{P}(X=3)=1 / 4$, and $\mathrm{P}(X=4)=1 / 12$. Construct two different Huffman codes, and for each one, compute its expected length.
2. [10 pts.] Let X, Y, and Z be discrete random variables. Show that $H(Z \mid X) \geq H(Z \mid X, Y)$.
3. [10 pts.] Let p, q, and r be pmfs on a finite set X . Show that

$$
\sum_{x \in \mathrm{X}} p(x) \log \frac{q(x)}{r(x)} \leq \sum_{x \in \mathrm{X}} p(x) \log \frac{p(x)}{r(x)}
$$

4. [20 pts.] Let X be a discrete random variable, and let $U=f(X)$, where f is a deterministic function. Show that $H(U) \leq H(X)$.
Hint: You don't need to use the inequality $\log t \leq(\log e)(t-1)$.
5. Let $X=Y=\{1,2,3\}$, and let

$$
\begin{aligned}
& W(\cdot \mid 1)=\left(\frac{2}{3}, \frac{1}{3}, 0\right), \\
& W(\cdot \mid 2)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \\
& W(\cdot \mid 3)=\left(0, \frac{1}{3}, \frac{2}{3}\right) .
\end{aligned}
$$

The goal of this problem is to find the capacity of the DMC with transition probability W.
(a) [25 pts.] Let $P_{X, Y}(x, y):=p(x) W(y \mid x)$. If $p(2)$ is fixed, show that $H(Y)$ is maximized if $p(1)=p(3)$, and this maximum value does not depend on $p(2)$.
(b) $[15$ pts. $]$ Find $\sup I(p \times W)$. What is the maximizing distribution p ?

