ECE 729, Lec. 1 **Final Exam** Due Wednesday, 12:05 pm, 14 May 1997

100 Points

Justify your answers! Be precise!

Open Class Notes. Do NOT use any books. Do NOT discuss the exam with anyone.

Final Exam

1. Let $X = [X_1, ..., X_n]'$ be a zero-mean, Gaussian random vector with covariance matrix R = E[XX']. In other words,

$$R_{ij} = \mathsf{E}[X_i X_j].$$

The density of *X* is

$$f(x) = \frac{\exp(-\frac{1}{2}x'R^{-1}x)}{(2\pi)^{n/2}\sqrt{\det R}},$$

where $\det R$ is the determinant of R.

(a) [15 pts.] Calculate the differential entropy of X and show that it is given by

$$h(X) = \frac{1}{2} \log[(2\pi e)^n \det R].$$

(b) [10 pts.] For the n = 2 case, write X = [Y, Z]' and

$$R = \begin{bmatrix} \alpha & \gamma \\ \gamma & \beta \end{bmatrix}$$

Calculate $I(Y \land Z)$ in terms of α, β , and γ . (*Remark*. It is interesting to evaluate $I(Y \land Z)$ in the special case $\alpha = \beta = r > 0$ and $\gamma = r\rho$ for some $-1 < \rho < 1$.)

2. [10 pts.] Let X be a real-valued, zero-mean, Gaussian random variable with variance σ^2 . Consider the 1-bit quantizer,

$$\hat{X} := aI_{(-\infty,0]}(X) + bI_{(0,\infty)}(X).$$

Find a and b (in terms of σ) to minimize $E[|X - \hat{X}|^2]$. Evaluate all integrals.

- 3. [15 pts.] Let (R_k, D_k) be a sequence of achievable rate-distortion pairs. Suppose that $(R_k, D_k) \rightarrow (R, D)$. Prove that (R, D) is an achievable rate-distortion pair.
- 4. [15 pts.] Let $\{X_k\}$ be a discrete, stationary source with entropy rate

$$\mathscr{H}(\{X_k\}) := \lim_{n\to\infty} \frac{1}{n} H(X_1,\ldots,X_n).$$

Show that for any fixed $m \ge 0$,

$$\lim_{n\to\infty}\frac{1}{n}H(X_n,\ldots,X_1|X_0,X_{-1},\ldots,X_{-m}) = \mathscr{H}(\{X_k\}).$$

5. [15 pts.] Let $\{X_k\}$ be a discrete, stationary source. In addition, assume that the source is Markov, i.e.,

$$\mathsf{P}(X_n = x_n | X_{n-1} = x_{n-1}, \dots, X_1 = x_1) = \mathsf{P}(X_n = x_n | X_{n-1} = x_{n-1}).$$

By stationarity, $p(y|x) := P(X_n = y|X_{n-1} = x)$ does not depend on *n*. Similarly, $q(x) := P(X_n = x)$ does not depend on *n*. Express $\mathscr{H}({X_k})$ in terms of *q* and *p*.

6. [20 pts.] Determine the capacity region of the DM MAC whose single-letter output is $Z = X \cdot Y$, where X and Y take values in the set $\{-1, +1\}$.