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Channel Coding — The Big Picture

In channel coding we can use either deterministic or random
codes, and we can use either the average or maximal probability
of error. Hence, we must introduce 4 notions of achievable rate.

Except in Section 5,X andY are finite sets.

1. Achievability Using Deterministic Codes

A deterministic encoder is any function f : {1, . . . ,N} →
X

n. Observe thatf = (x1, . . . ,xN) is an element of

X
n ×·· ·×X

n
︸ ︷︷ ︸

N times

.

There are|X|nN possible encoders.
A deterministic decoder is any function ϕ : Y

n →
{1, . . . ,N}. If we enumerate the elements ofY

n as

y1, . . . ,y|Y|n ,

then a decoder is specified by assigning each element to one of
the numbers 1, . . . ,N. Hence, there areN|Y|n possible decoders.

1.1. Probabilistic Model

Let f = (x1, . . . ,xN) be a given encoder. LetM be a
{1, . . . ,N}-valued random variable, and letY be aY

n-valued
random variable with joint probabilities of the form

P(M = i,Y ∈ B) =
1
N
·Wn(B|xi), (1)

wherei ∈ {1, . . . ,N} andB ⊂ Y
n, and whereWn(B|x) is short-

hand for

∑
y∈B

Wn(y|x),

andWn(y|x) is a conditional probability mass function.
We can use the law of total probability and the law of sub-

stitution to write

P(ϕ(Y) 6= M) =
1
N

N

∑
i=1

P(ϕ(Y) 6= M|M = i)

=
1
N

N

∑
i=1

P(ϕ(Y) 6= i|M = i)

=
1
N

N

∑
i=1

Wn({y : ϕ(y) 6= i}|xi)

=: en( f ,ϕ). (2)

1.2. Achievable-Rate Definitions

Definition D-A. A numberR ≥ 0 is achievable usingdeter-
ministic codesunder theaverageprobability-of-error criterion

if for every λ > 0, for every∆R > 0, for all sufficiently largen,
there is a positive integerN with

logN
n

> R−∆R,

and there is adeterministic code( f ,ϕ) with f = (x1, . . . ,xN)
such that

1
N

N

∑
i=1

Wn({y : ϕ(y) 6= i}|xi) < λ . (3)

Of course, (3) is equivalent to writingP(ϕ(Y) 6= M) < λ
under the probabilistic model (1).

Definition D-M. A numberR ≥ 0 is achievable usingdeter-
ministic codesunder themaximal probability-of-error criterion
if for every λ > 0, for every∆R > 0, for all sufficiently largen,
there is a positive integerN with

logN
n

> R−∆R,

and there is adeterministic code( f ,ϕ) with f = (x1, . . . ,xN)
such that

Wn({y : ϕ(y) 6= i}|xi) < λ , i = 1, . . . ,N. (4)

If (1) is replaced byq(i)Wn(B|xi) for any probability mass
functionq(i), then (4) impliesP(ϕ(Y) 6= M) < λ .

It is obvious that if a rate satisfies Definition D-M, then it
satisfies Definition D-A. In other words, ifCD-M denotes the set
of achievable rates under Definition D-M, and ifCD-A denotes
the set of achievable rates under Definition D-A, then

CD-M ⊂ CD-A .

The result that
1
N

N

∑
i=1

θi < λ

implies that at least⌊N/2⌋ of theθi are less than 2λ shows, after
decoder modification, that if a rate satisfies D-A, then it satisfies
D-M. In other words,

CD-A ⊂ CD-M .

Hence,
CD-M = CD-A . (5)

2. Achievability Using Random Codes

Let U N
n denote the set of all encoder-decoder pairs( f ,ϕ).

The collectionU N
n is a finite set with|X|nNN|Y|n elements. If

(F,Φ) is aU N
n -valued random variable, then(F,Φ) is arandom

code.
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2.1. Probabilistic Model

Let (F,Φ) be a random code, letM be a{1, . . . ,N}-valued
random variable, and letY be aY

n-valued random variable with
conditional joint probabilities given by

P(M = i,Y ∈ B|F = f ,Φ = ϕ) =
1
N

Wn(B|xi), (6)

where f = (x1, . . . ,xN). By the analysis leading to (2), we see
that

P(Φ(Y) 6= M|F = f ,Φ = ϕ) = en( f ,ϕ).

2.2. Achievable-Rate Definitions

Definition R-A. A numberR ≥ 0 is achievable usingran-
dom codesunder theaverageprobability-of-error criterion if
for everyλ > 0, for every∆R > 0, for all sufficiently largen,
there is a positive integerN with

logN
n

> R−∆R,

and there is aU N
n -valued random code (F,Φ) with F =

(X1, . . . ,XN) such that

E

[
1
N

N

∑
i=1

Wn({y : Φ(y) 6= i}|Xi)

]

< λ . (7)

The left-hand side of (7) is justE[en(F,Φ)].

Definition R-M. A numberR ≥ 0 is achievable usingran-
dom codesunder themaximal probability-of-error criterion if
for everyλ > 0, for every∆R > 0, for all sufficiently largen,
there is a positive integerN with

logN
n

> R−∆R,

and there is aU N
n -valued random code (F,Φ) with F =

(X1, . . . ,XN) such that

E
[
Wn({y : Φ(y) 6= i}|Xi)

]
< λ , i = 1, . . . ,N. (8)

It is obvious that if a rate satisfies Definition R-M, then it
satisfies Definition R-A. In other words, ifCR-M denotes the set
of achievable rates under Definition R-M, and ifCR-A denotes
the set of achievable rates under Definition R-A, then

CR-M ⊂ CR-A. (9)

3. Connecting Random and Deterministic Codes

The random coding argument is that if E[en(F,Φ)] < λ ,
then there must be a realization( f ,ϕ) with en( f ,ϕ) < λ . In
other words, if (7) holds, then there is a encoder-decoder real-
ization such that (3) holds. Hence, if a rate satisfies R-A, then it
satisfies D-A. Symbolically, we write

CR-A ⊂ CD-A . (10)

If we combine (9) and (10), we obtain

CR-M ⊂ CR-A ⊂ CD-A . (11)

4. Analysis of the DMC

For the DMC,Wn = W n. Put

C :=
{

R ≥ 0 : R ≤ sup
P

I(P×W )
}

.

For this setC , we proved the forward resultC ⊂ CR-M,1 and
we proved the weak converseCD-A ⊂ C . Combining these two
results with (11) shows that all the sets in (11) are equal toC .
In fact, on account of (5), for the DMC,

CR-M = CR-A = CD-M = CD-A = C .

5. Continuous Channels and Gaussian Channels

Let X = Y = IR. We now reinterpretWn(B|x) in the preced-
ing sections as shorthand for

∫

B
wn(y|x)dy,

wherewn(y|x) is a conditional density function.
The deterministic-code achievable-rate definitions are now

easily extended adding the power constraint

‖xi‖
2 ≤ nP, i = 1, . . . ,N (12)

for both the maximal and average probability-of-error defini-
tions. Since both modified achievable-rate definitions use the
same power constraint, it is easy to see that

CD-M(P) ⊂ CD-A(P).

We extend the random-code achievable-rate definitions by
adding the power constraint

E
[
‖Xi‖

2] ≤ nP, i = 1, . . . ,N (13)

for both the maximal and average probability-of-error defini-
tions. We then have

CR-M(P) ⊂ CR-A(P).

In the case of a memoryless channel (wn = wn), let

C (P) :=
{

R ≥ 0 : R ≤ sup
X :E[X2]≤P

I(X ∧Y )
}

,

whereY has conditional densityfY |X (y|x) = w(y|x). Since the
random encoder we used implies

E
[
‖Xi‖

2] = E

[ n

∑
k=1

X2
ik

]

=
n

∑
k=1

E[X2
ik] ≤ nP,

we actually proved the forward resultC (P) ⊂ CR-M(P). At this
point we have established thatC (P) ⊂ CR-M ⊂ CR-A. Part of
the extended Definition R-A is that (7) holds. We then used
the random coding argument to get (3).However, we do not

1Recall that we used random codewords chosen i.i.d., and the decoder was
taken to be a specific deterministic function of the random codebook.
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know anything about the values of the ‖Xi‖
2 or the ‖xi‖

2. We
then extracted a subset of⌊N/2⌋−1 codewordsxi that satisfied
(4) for 2λ and the power constraint‖xi‖

2 ≤ nP, and we modi-
fied the decoder to use fewer messages. Hence, we established
that C (P) ⊂ CR-M(P) ⊂ CR-A(P) ⊂ CD-M(P). As noted above,
CD-M(P) ⊂ CD-A(P).

For the Gaussian channel we first showed that

sup
X :E[X2]≤P

I(X ∧Y ) =
1
2

log
(

1+
P

N0

)

.

We were then able to prove the weak converseCD-A(P)⊂C (P).
We have thus established that for the Gaussian channel un-

der a power constraint ((12) for deterministic codes and (13) for
random codes),

CR-M(P) = CR-A(P) = CD-M(P) = CD-A(P) = C (P). (14)

Remark. There are at least two alternatives to (13) that we
could have considered. Since

1
N

N

∑
i=1

E
[
‖Xi‖

2] ≤ nP

is implied by (13), it is easy to see that if (13) is replaced by
this condition, then the analysis leading to (14) still holds. On
the other hand, stronger techniques would be needed to analyze
what happens if (13) were replaced by

‖Xi‖
2 ≤ nP almost surely.

Remark. In all of our work, we never used a random de-
coder except in so far as ifϕ(y) = ϕx1,...,xN (y) depends on the
codebook, and if the codebook is random, then so isϕ(y) =
ϕX1,...,XN (y). Hence, everything would go through unchanged if
we restricted to decoders to be of this form.
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