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ECE 729
Channel Coding — The Big Picture

In channel coding we can use either deterministic or randafrfor every A > 0, for everyAR > 0, for all sufficiently largen,
codes, and we can use either the average or maximal prapabilhere is a positive integét with

of error. Hence, we must introduce 4 notions of achievalike ra

Except in Section 5 andY are finite sets.

1. Achievability Using Deterministic Codes

A deterministic encoderis any functionf : {1,...,N} —
X". Observe that = (x3,...,Xn) is an element of

XMoo x XM,
———
N times

There argX|™ possible encoders.
A deterministic decoder is any function ¢ : Y" —
{1,...,N}. If we enumerate the elements¥t as

Y1,- "ay\Y\na

IO%N >~ R—AR

and there is @eterministic code (f,¢) with f = (x1,...,Xn)
such that

1 X _ .
Ni;Wn({y-¢(y)7é|}|Xi)<A- @)

Of course, (3) is equivalent to writing(¢(Y) # M) < A
under the probabilistic model (1).

Definition D-M. A numberR > 0 is achievable usindeter-
ministic codesunder themaximal probability-of-error criterion
if for every A > 0, for everyAR > 0, for all sufficiently largen,
there is a positive integét with

logN
%>R—AR,

then a decoder is specified by assigning each element to one of
the numbers 1..,N. Hence, there ardlY!" possible decoders. and there is aeterministic code (f,$) with f = (x1,...,X\)

1.1. Probabilistic Model

Let f = (X1,...,Xn) be a given encoder. Letl be a
{1,...,N}-valued random variable, and I&t be aY"-valued
random variable with joint probabilities of the form

. 1
PM=iYe B):N-Wn(B|Xi)7 (1)
wherei € {1,...,N} andB C Y", and whera\,(B|x) is short-
hand for

Wn(y‘X),
2

andWs(y|x) is a conditional probability mass function.

We can use the law of total probability and the law of sub-

stitution to write

PO(Y) £ M) = ;_ip@(ww -i)
L
= 43 PO #iM=)
1 N
= Ni;Wn({yi d(y) #itxi)

=1en(f,9).

1.2. Achievable-Rate Definitions

()

Definition D-A. A numberR > 0 is achievable usindeter-

such that

Wa({y: o(y) #itxi) <A, i=1

If (1) is replaced byq(i)Wh(BJxi) for any probability mass
functionq(i), then (4) implieP (¢ (Y) #M) < A.

It is obvious that if a rate satisfies Definition D-M, then it
satisfies Definition D-A. In other words, #p.m denotes the set
of achievable rates under Definition D-M, anddf.n denotes
the set of achievable rates under Definition D-A, then

N (4)

6p-m C Cp-A-
The result that
s 6 <A
— b <
N 2,

implies that at leastN /2] of the 8 are less than® shows, after
decoder modification, that if a rate satisfies D-A, then is§ias
D-M. In other words,

oA C GpM-

Hence,
6p-m = Cp-A- (5)
2. Achievability Using Random Codes

Let N denote the set of all encoder-decoder péirsp).
The collectionZN is a finite set withX|"™NNIYI" elements. If
(F,®) is azN-valued random variable, théR, ®) is arandom

ministic codesunder theaverageprobability-of-error criterion code



randomcodes.tex March 17, 2006

2.1. Probabilistic Model 4. Analysis of the DMC

Let (F,®) be a random code, |& be a{1,...,N}-valued For the DMC W, = W". Put
random variable, and 1&t be aY"-valued random variable with

conditional joint probabilities given by & = {R >0:R< supl(Px W)}.
p

. 1
PM=iYeBF=1f0=¢)= NW”(B‘Xi)’ ©)  Eor this set#’, we proved the forward resulf C %r.m,t and

. . . we proved the weak convergg ., C 4. Combining these two
mgfref = (1, ). By the analysis leading to (2), we seq . o i (11) shows that all the sets in (11) are equé&fto
In fact, on account of (5), for the DMC,

P(®(Y) #MIF = f, 0 =¢) =en(f,9).

2.2. Achievable-Rate Definitions

dom codesunder theaverage probability-of-error criterion if

Gr-M = Cr-A = Cp-M =CDA=F.

for everyA > 0, for everyAR > 0, for all sufficiently largen, ~ LetX =Y =IR. We now reinterpreéiy(B|x) in the preced-
there is a positive integéd with ing sections as shorthand for
logN _ R—aR / W (y[x) dy,
n B
and there is a%N-valued random code (F,®) with F = wherew,(y[x) is a conditional density function.
(X1,...,Xn) such that The deterministic-code achievable-rate definitions am@ no
\ easily extended adding the power constraint
1 .
£[ 5 3 Wh(1y: 0 )] <. ) KPP i1 )
The left-hand side of (7) is jus[en(F, D)]. for both the maximal and average probability-of-error defin

tions. Since both modified achievable-rate definitions hse t

Definition R-M. A numberR > 0 is achievable usingan- R
same power constraint, it is easy to see that

dom codesunder themaximal probability-of-error criterion if
for evgry)\ > O fo.r everyAR > 0, for all sufficiently largen, o (P) C Gon(P).

there is a positive integét with

We extend the random-code achievable-rate definitions by

logN
% >R—-AR, adding the power constraint
and there is a%N-valued random code (F,®) with F = E[IXi|°] <nP, i=1,...,N (13)
(X1, Xn) such that for both the maximal and average probability-of-error defin
EMh({y: @) #i}[X)] <A, i=1...N. (8 tons. Wethen have
It is obvious that if a rate satisfies Definition R-M, then it Gr-m(P) C 6r-a(P).
satisfies Definition R-A. In other words, #z.v denotes the set
of achievable rates under Definition R-M, andéig.a denotes In the case of a memoryless channei & w"), let

the set of achievable rates under Definition R-A, then
¢(P):= {RzO:Rg sup I(X/\Y)},
Gr-M C Crea. (9) X:E[X2]<P

3. Connecting Random and Deterministic Codes WhereY has conditional densitfy x (y|x) = w(y|x). Since the
random encoder we used implies
The random coding argumentis that if E[en(F,®)] < A,

then there must be a realizatiof, ¢) with en(f,¢) < A. In 2 el e w2l e e
other words, if (7) holds, then there is a encoder-decods+ re Bl = [kzlxik} N kZlE[Xik] =
ization such that (3) holds. Hence, if a rate satisfies R-@nth
satisfies D-A. Symbolically, we write we actually proved the forward res@t(P) C $r-m(P). At this
point we have established th&t(P) C ér-m C %r-a. Part of
CR-A C CD-A- (10)  the extended Definition R-A is that (7) holds. We then used

If we combine (9) and (10), we obtain the random coding argument to get (3owever, we do not

1Recall that we used random codewords chosen i.i.d., andetbedér was
Er-M C 6rA C GpeA- (11) taken to be a specific deterministic function of the randoneboadk.
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know anything about the values of the ||Xi||? or the ||x;||%. We
then extracted a subset [0fl /2] — 1 codewords; that satisfied
(4) for 2A and the power constraintx;||? < nP, and we modi-
fied the decoder to use fewer messages. Hence, we established
that € (P) C ér-m(P) C ér-a(P) C $p-m(P). As noted above,
Go-m (P) (- CKD_A(P>.
For the Gaussian channel we first showed that

1 P
sup I(XAY)=Zlog(1l+— ).

We were then able to prove the weak convefse (P) € € (P).

We have thus established that for the Gaussian channel un-
der a power constraint ((12) for deterministic codes an{l {dr3
random codes),

Gr-M(P) = 6r-a(P) = 6p-m(P) = 6p-a(P) =€(P).  (14)

Remark. There are at least two alternatives to (13) that we
could have considered. Since

1 : E[[IXi|[?] <nP
Ni; illc] <

is implied by (13), it is easy to see that if (13) is replaced by
this condition, then the analysis leading to (14) still loldn
the other hand, stronger techniques would be needed tozanaly
what happens if (13) were replaced by

|Xi||> < nP almost surely

Remark. In all of our work, we never used a random de-
coder except in so far as @i(y) = ¢y,,..xy (yY) depends on the
codebook, and if the codebook is random, then s¢(ig) =
Px,...xy (Y). Hence, everything would go through unchanged if
we restricted to decoders to be of this form.
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