ECE 730
 Modern Probability Theory and Stochastic Processes

Instructor: John A. Gubner Class Webpage

What Will You Learn in 730?

- Probability Models
- Random variables
- The usual + gamma, Erlang, chi squared, Rayleigh Nakagami, Rice, noncentral chi squared
- Random vectors - especially the Gaussian
- Random processes
- Markov chains
- Poisson process
- Wiener process
- Tools
- Conditional probability and conditional expectation, the law of total probability, the smoothing property
- Moment generating function, characteristic function, especially for independent random variables
- Karhunen-Loeve expansion
- Limits
- To define new quantities; e.g., infinite sums and integrals of random processes
- To approximate statistics; e.g., the central limit theorem and the law of large numbers:

$$
\mathrm{P}\left(X_{n} \in B\right) \approx \mathrm{P}(X \in B) \quad \mathrm{E}\left[X_{k}\right] \approx \frac{1}{n} \sum_{k=1}^{n} X_{k}
$$

Course Organization

- Homework: assigned on Wed., due following Wed.
- Office Hours: TBA \& I will almost always be available after every class to answer questions
- There will be a midterm night exam - TBA

Some Considerations

- Comm/DSP students
- For a PhD, 730 is REQUIRED, and is covered on the PhD Qualifying Exam.
- For a MS, 730 is NOT required.
- Other areas: 730 is NOT required.

1.2 Review of Set Notation

- Subset $A \subset B$
- Complement A^{c} (not compliment)
- Empty set or null set \varnothing
- Union $A \cup B$
- Intersection $A \cap B$
- Set difference $A \backslash B=A \cap B^{\text {c }}$
- Disjoint or mutually exclusive $A \cap B=\varnothing$

Set Identities

- Commutative: $A \cup B=B \cup A$ and $A \cap B=B \cap A$
- Associative: $A \cup(B \cup C)=(A \cup B) \cup C$ and $A \cap(B \cap C)=(A \cap B) \cap C$
- Distributive: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ and $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- De Morgan: $(A \cap B)^{c}=A c \cup B c$ and $(A \cup B) c=A c \cap B c$

Infinite Operations

- Generalized distributive laws

$$
B \cap\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\bigcup_{n=1}^{\infty}\left(B \cap A_{n}\right) \quad B \cup\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\bigcap_{n=1}^{\infty}\left(B \cup A_{n}\right)
$$

- Generalized De Morgan's laws

$$
\left(\bigcap_{n=1}^{\infty} A_{n}\right)^{c}=\bigcup_{n=1}^{\infty} A_{n}^{c} \quad\left(\bigcup_{n=1}^{\infty} A_{n}\right)^{c}=\bigcap_{n=1}^{\infty} A_{n}^{c}
$$

- Partition: Disjoint sets whose union is the whole space Ω.

Functions

- In the notation $f: X \rightarrow Y$ the set X is called the domain and the set Y is called the co-domain.
- The range of f is $\{f(x): x \in X\}$, which is a proper subset of Y.
- A function $f: X \rightarrow Y$ is 1 -to-1 if

$$
f\left(x_{1}\right)=f\left(x_{2}\right)==>x_{1}=x_{2} .
$$

- A function $f: X \rightarrow Y$ is onto if
for every $y \in Y$, there is at least one $x \in X$ with $f(x)=y$.

Functions (continued)

- A function is onto <==> its range is equal to the co-domain.
- A function is invertible <==> it is both 1-to-1 and onto.
- Even if f is not invertible, if B is a subset of Y, we put

$$
f^{-1}(B):=\{x \in X: f(x) \in B\}
$$

