What Will You Learn in 730?

• Probability Models
 • Random variables
 – The usual + gamma, Erlang, chi squared, Rayleigh
 Nakagami, Rice, noncentral chi squared
 • Random vectors – especially the Gaussian
 • Random processes
 – Markov chains
 – Poisson process
 – Wiener process
• **Tools**

 • Conditional probability and conditional expectation, the law of total probability, the smoothing property

 • Moment generating function, characteristic function, especially for independent random variables

 • Karhunen-Loeve expansion

 • **Limits**

 – To define new quantities; e.g., infinite sums and integrals of random processes

 – To approximate statistics; e.g., the central limit theorem and the law of large numbers:

\[
P(X_n \in B) \approx P(X \in B) \quad \text{and} \quad E[X_k] \approx \frac{1}{n} \sum_{k=1}^{n} X_k
\]
Course Organization

- Homework: assigned on Wed., due following Wed.
- Office Hours: TBA & I will almost always be available after every class to answer questions
- There will be a midterm night exam – TBA
Some Considerations

- Comm/DSP students
 - For a PhD, 730 is REQUIRED, and is covered on the PhD Qualifying Exam.
 - For a MS, 730 is NOT required.
- Other areas: 730 is NOT required.
1.2 Review of Set Notation

• Subset $A \subset B$
• Complement A^c (not compliment)
• Empty set or null set \emptyset
• Union $A \cup B$
• Intersection $A \cap B$
• Set difference $A \setminus B = A \cap B^c$
• Disjoint or mutually exclusive $A \cap B = \emptyset$
Set Identities

- Commutative: \(A \cup B = B \cup A\) and \(A \cap B = B \cap A\)

- Associative: \(A \cup (B \cup C) = (A \cup B) \cup C\) and \(A \cap (B \cap C) = (A \cap B) \cap C\)

- Distributive: \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\) and \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)

- De Morgan: \((A \cap B)^c = A^c \cup B^c\) and \((A \cup B)^c = A^c \cap B^c\)
Infinite Operations

- Generalized distributive laws
 \[
 B \cap \left(\bigcup_{n=1}^{\infty} A_n \right) = \bigcup_{n=1}^{\infty} (B \cap A_n)
 \]
 \[
 B \cup \left(\bigcap_{n=1}^{\infty} A_n \right) = \bigcap_{n=1}^{\infty} (B \cup A_n)
 \]

- Generalized De Morgan's laws
 \[
 \left(\bigcap_{n=1}^{\infty} A_n \right)^c = \bigcup_{n=1}^{\infty} A_n^c
 \]
 \[
 \left(\bigcup_{n=1}^{\infty} A_n \right)^c = \bigcap_{n=1}^{\infty} A_n^c
 \]

- Partition: Disjoint sets whose union is the whole space \(\Omega \).
Functions

• In the notation $f : X \rightarrow Y$ the set X is called the **domain** and the set Y is called the **co-domain**.

• The **range** of f is $\{ f(x) : x \in X \}$, which is a proper subset of Y.

• A function $f : X \rightarrow Y$ is **1-to-1** if $f(x_1) = f(x_2) \implies x_1 = x_2$.

• A function $f : X \rightarrow Y$ is **onto** if for every $y \in Y$, there is at least one $x \in X$ with $f(x) = y$.
Functions (continued)

- A function is **onto** \iff its range is equal to the co-domain.
- A function is **invertible** \iff it is both **1-to-1** and **onto**.
- Even if f is not invertible, if B is a subset of Y, we put

$$f^{-1}(B) := \{ x \in X : f(x) \in B \}$$