ECE 730, Lec. 1 Exam 2 Wednesday, 11 Dec. 2002 5–7 pm in 159 ME

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring two sheets of 8.5 in. \times 11 in. paper on which you have prepared formulas.

- 1. [15 pts.] The Gaussian signal $X \sim N(0, \sigma^2)$ is subjected to independent Rayleigh fading so that the received signal is Y = ZX, where $Z \sim \text{Rayleigh}(1)$ and X are independent. Find the density of *Y*. *Hint:* First find the moment generating function of *Y*.
- 2. [10 pts.] Find the stationary distribution of the continuous-time Markov chain with generator matrix

$$G = \begin{bmatrix} -1 & 1 & 0 \\ 2 & -5 & 3 \\ 5 & 4 & -9 \end{bmatrix}.$$

- 3. [15 pts.] Let $X_n \sim \text{Cauchy}(1/n)$. Determine whether or not X_n converges in probability to zero. Justify your answer.
- 4. Let X_n converge almost surely to X.
 - (a) [10 pts.] Show that

$$\frac{1}{1+X_n^2}$$
 converges almost surely to $\frac{1}{1+X^2}$.

(b) [10 pts.] Determine whether or not

$$\lim_{n \to \infty} \mathsf{E}\left[\frac{1}{1+X_n^2}\right] = \mathsf{E}\left[\frac{1}{1+X^2}\right].$$

Justify your answer.

- 5. [10 pts.] Let $X_n \sim \text{Laplace}(n)$. Show that X_n converges almost surely to zero.
- 6. [15 pts.] Let f be a given function that satisfies $\int_0^\infty f(t)^2 dt < \infty$, and let W_t be a Wiener process with $\mathsf{E}[W_t^2] = t$. Find the projection of

$$\int_0^\infty f(t)\,dW_t$$

onto the subspace

$$M := \left\{ \int_0^1 g(t) \, dW_t : \int_0^1 g(t)^2 \, dt < \infty \right\}.$$

7. [15 pts.] Suppose state j of a discrete-time Markov chain is "transient" in the sense that

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} < \infty,$$

where $p_{ij}^{(n)} := \mathsf{P}(X_n = j | X_0 = i)$. Show that

$$\mathsf{P}\left(\bigcap_{N=1}^{\infty}\bigcup_{n=N}^{\infty}\{X_n=j\}\Big|X_0=i\right) = 0.$$