ECE 730, Lec. 1 Exam 1 Tuesday, 21 Oct. 2003 5:15–6:45 pm

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring one sheet of $8.5 \text{ in.} \times 11 \text{ in.}$ paper on which you have prepared formulas.

- 1. [20 pts.] Internet packets arrive at a router according to a Poisson process of rate λ . Find the variance of the time it takes for the first *n* packets to arrive.
- 2. [20 pts.] Let W_t be a Wiener process with $\mathsf{E}[W_t^2] = \sigma^2 t$. Put $Y_t := e^{W_t}$. Find the correlation function $R_Y(t_1, t_2) := \mathsf{E}[Y_{t_1}Y_{t_2}]$ for $t_2 > t_1$.
- 3. [20 pts.] Let X_1, \ldots, X_n be random variables, and define

$$Y_k := \sum_{i=1}^k X_i, \quad k = 1, \dots, n.$$

Suppose that Y_1, \ldots, Y_n are jointly Gaussian. Are X_1, \ldots, X_n jointly Gaussian? Justify your answer.

- 4. [20 pts.] Let X and Y be zero-mean random vectors with C_Y and C_{XY} given. Do not assume C_Y is invertible. Let $\widehat{X} = AY$ be the linear MMSE estimator of X based on Y. The error covariance is defined to be $\mathsf{E}[(X \widehat{X})(X \widehat{X})']$. Of the following formulas
 - (a) $C_X AC_{YX}$
 - (b) $C_X C_{XY}A'$
 - (c) $C_X AC_{YX} C_{XY}A' + AC_YA'$

list all the ones, if any, that are valid expressions for the error covariance. Show your work.

5. [20 pts.] Let Ω be an uncountable set. Let \mathcal{A} denote the collection of all subsets A such that either A is countable or A^c is countable. Is \mathcal{A} a σ -field? Justify your answer.