ECE 730, Lec. 1 Exam 1 Wednesday, 26 Oct. 2005 5:15–6:45 pm Room 376 Mechanical Engineering

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring one sheet of 8.5 in. \times 11 in. paper on which you have prepared formulas.

- 1. [10 pts.] Let \mathcal{H} be a σ -field of IR that contains all sets of the form (a, b], where $-\infty < a < b < \infty$. Determine whether or not \mathcal{H} contains all sets of the form $(-\infty, b]$. Justify your answer.
- 2. [25 pts.] Let *X* and *Z* be random variables such that *Z* is observed and an estimate of *X* is to be constructed. Consider estimates of the form

$$\sum_{k=1}^n a_k Z^k,$$

where a_1, \ldots, a_n are to be determined to minimize

$$\mathsf{E}\left[\left|X-\sum_{k=1}^{n}a_{k}Z^{k}\right|^{2}\right].$$

Find equations that the optimal a_k must satisfy.

- 3. [25 pts.] The time to send an internet packet is $T \sim \exp(\lambda)$, and the time to receive the acknowledgement is $A \sim \exp(\mu)$. If T and A are independent, find $P(T \le z/2|T + A = z)$. Evaluate all integrals.
- 4. [20 pts.] Let X and Z be independent with $X \sim N(0,1)$ and $P(Z = \pm 1) = 1/2$. Determine whether or not $Y := Z\sqrt{X^2}$ is Gaussian. Justify your answer.
- 5. [20 pts.] Let X be a random variable, and put $A := \{x \in \mathbb{R} : P(X = x) > 0\}$. Show that A is a countable set. Do not assume that X is a discrete random variable. *Hint:* You may use the fact that the set $A_n := \{x \in \mathbb{R} : P(X = x) > 1/n\}$ contains at most *n* points.