ECE 730 Exam 1 30 March 2009 5:30–7:00 pm in 3534 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring one sheet of 8.5 in. \times 11 in. paper on which you have prepared formulas.

- 1. [20 pts.] Let Ω denote the positive integers. Let \mathscr{A} denote the collection of all subsets A such that either A is finite or A^c is finite. Let \mathscr{B} denote the smallest σ -algebra that contains \mathscr{A} . Determine whether or not \mathscr{B} contains all subsets of Ω . Justify your answer.
- 2. [20 pts.] Let X be a positive random variable with mean *m* and variance σ^2 . Given X = x, suppose $\{N_t, t \ge 0\}$ is a Poisson process with rate *x*. Find the linear MMSE estimate of X based on observing N_t at a fixed time *t*.
- 3. [20 pts.] Let X_1, \ldots, X_n be jointly Gaussian random variables. Let X_0 be another random variable such that for all c_1, \ldots, c_n ,

$$X_0 + \sum_{k=1}^n c_k X_k$$

is a scalar Gaussian random variable. Determine whether or not X_0, X_1, \ldots, X_n are jointly Gaussian. Justify your answer.

4. [20 pts.] Let $X \sim N(0, \sigma_X^2)$ and $Y \sim N(0, \sigma_Y^2)$. Put

$$\begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}.$$

If X and Y are independent, is it possible to choose *nonzero* a, b, c, d so that U and V are independent? Justify your answer.

5. [20 pts.] Let X_t be a zero-mean, wide-sense stationary random process with power-spectral density

$$S_X(f) = \begin{cases} 1 - f^2, \ |f| \le 1, \\ 0, \ |f| > 1. \end{cases}$$

Suppose X_t is applied to the linear, time-invariant system with transfer function H(f) shown below

Evaluate $E[|Y_t - X_t|^2]$. Show your work.