# ECE 730 <br> Exam 1 <br> 30 March 2009 <br> 5:30-7:00 pm in 3534 EH 

## 100 Points

Justify your answers!

Closed Book

Be precise!

Closed Notes

You may bring one sheet of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

1. [20 pts.] Let $\Omega$ denote the positive integers. Let $\mathscr{A}$ denote the collection of all subsets $A$ such that either $A$ is finite or $A^{\mathrm{c}}$ is finite. Let $\mathscr{B}$ denote the smallest $\sigma$-algebra that contains $\mathscr{A}$. Determine whether or not $\mathscr{B}$ contains all subsets of $\Omega$. Justify your answer.
2. [20 pts.] Let $X$ be a positive random variable with mean $m$ and variance $\sigma^{2}$. Given $X=x$, suppose $\left\{N_{t}, t \geq 0\right\}$ is a Poisson process with rate $x$. Find the linear MMSE estimate of $X$ based on observing $N_{t}$ at a fixed time $t$.
3. [20 pts.] Let $X_{1}, \ldots, X_{n}$ be jointly Gaussian random variables. Let $X_{0}$ be another random variable such that for all $c_{1}, \ldots, c_{n}$,

$$
X_{0}+\sum_{k=1}^{n} c_{k} X_{k}
$$

is a scalar Gaussian random variable. Determine whether or not $X_{0}, X_{1}, \ldots, X_{n}$ are jointly Gaussian. Justify your answer.
4. [20 pts.] Let $X \sim N\left(0, \sigma_{X}^{2}\right)$ and $Y \sim N\left(0, \sigma_{Y}^{2}\right)$. Put

$$
\left[\begin{array}{l}
U \\
V
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

If $X$ and $Y$ are independent, is it possible to choose nonzero $a, b, c, d$ so that $U$ and $V$ are independent? Justify your answer.
5. [20 pts.] Let $X_{t}$ be a zero-mean, wide-sense stationary random process with power-spectral density

$$
S_{X}(f)=\left\{\begin{array}{cc}
1-f^{2}, & |f| \leq 1 \\
0, & |f|>1
\end{array}\right.
$$

Suppose $X_{t}$ is applied to the linear, time-invariant system with transfer function $H(f)$ shown below


Evaluate $\mathrm{E}\left[\left|Y_{t}-X_{t}\right|^{2}\right]$. Show your work.

