ECE 730 Final Exam 11 May 2009 10:05 am – 12:05 pm in 3534 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring two sheets of 8.5 in. \times 11 in. paper on which you have prepared formulas.

ECE 730, Lec. 1 Final Exam Monday, 11 May 2009 10:05 am - 12:05 pm in 3534 EH Page 1

1. [15 pts.] Let X and Y be jointly Gaussian random variables with $X \sim N(0, \sigma_X^2)$, $Y \sim N(0, \sigma_Y^2)$, and with X and Y having correlation coefficient

$$\rho := \frac{\mathsf{E}[XY]}{\sigma_X \sigma_Y}.$$

- (a) Find E[X|Y].
- (b) Find $\mathsf{E}[|X \mathsf{E}[X|Y]|^2]$.
- 2. [10 pts.] Let $\{N_t, t \ge 0\}$ be a Poisson process with intensity λ . For 0 < s < t, find $\mathsf{E}[N_t|N_s]$.
- 3. [15 pts.] Let U_1, U_2, \ldots be i.i.d. uniform[0,1] random variables. Let $N \sim \text{Poisson}(\lambda)$ be independent of $\{U_k\}_{k=1}^{\infty}$. Find the probability density of $Z := \max(U_1, \ldots, U_{N+1})$.
- 4. [20 pts.] Let $\{W_t, t \ge 0\}$ be a Wiener process, and put

$$X_n := \sum_{k=1}^n W_{k-1}(W_k - W_{k-1}), \quad n \ge 1.$$

Determine whether or not $\{X_n, n \ge 1\}$ is a martingale with respect to $\{W_n, n \ge 1\}$. Justify your answer.

- 5. [20 pts.] Let X_n converge in probability to X. Put $Y_n := \sin(X_n)$ and $Y := \sin(X)$. Determine whether or not Y_n converges in mean of order one to Y. Justify your answer.
- 6. [20 pts.] Suppose $X_n \sim \text{Cauchy}(\lambda_n)$ and converges almost surely to a random variable X. Determine whether or not X is a Cauchy random variable. Justify your answer.