ECE 730 Final Exam 13 May 2011 5:05 pm – 7:05 pm in 2534 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring two sheets of 8.5 in. \times 11 in. paper on which you have prepared formulas.

1. Let Y_t be the response of an LTI system to a zero-mean wide-sense stationary (WSS) process X_t . If the input X_t has correlation function

$$R_X(\tau) = 2 \left[\frac{\sin(2\pi\tau)}{2\pi\tau} \right]^2,$$

and the LTI system has transfer function

$$H(f) := \begin{cases} \frac{1}{\sqrt{1 - |f|/2}}, & |f| \le 1, \\ 0, & |f| > 1, \end{cases}$$

find the correlation function of Y_t .

- 2. Suppose X_n and X are random variables with zero means, unit variances, and correlation $E[X_nX] = 1 1/(2n^2)$.
 - (a) Show that X_n converges in mean of order 2 to X.
 - (b) Show that X_n converges almost surely to X.
- 3. Let X_t and Y_t be zero-mean, jointly wide-sense stationary (J-WSS) random processes with given cross-correlation function $R_{XY}(\tau)$ and given autocorrelation functions $R_X(\tau)$ and $R_Y(\tau)$. Let $Z_t := \text{sgn}(Y_t)$, where sgn denotes the sign function defined by

$$sgn(y) := \begin{cases} 1, \ y > 0, \\ 0, \ y = 0, \\ -1, \ y < 0. \end{cases}$$

Assuming X_t and Y_t are jointly Gaussian processes, find the cross-correlation $E[X_{t_1}Z_{t_2}]$. Evaluate all integrals.

- 4. Let $X_n \sim \text{geometric}_0(p_n)$, $0 \le p_n < 1$, and suppose that X_n converges in mean of order 2 to some $X \in L^2$. Find the distribution of X assuming var(X) > 0. Justify your answer.
- 5. Let $\{N_t, t \ge 0\}$ be a Poisson process with intensity $\lambda = 1$. Define a new process $M_t := N_{v(t)}$, where $v: [0, \infty) \to [0, \infty)$ is an invertible function that is strictly increasing, differentiable, and satisfies v(0) = 0. The occurrence times of M_t are

$$S_n := \min\{t : M_t \ge n\}.$$

Find the density of S_n .