ECE 730 Exam 1 25 October 2012 5:00–6:30 pm in 2255 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring one sheet of 8.5 in. \times 11 in. paper on which you have prepared formulas.

1. Let $\Omega := \{1, 2, 3, 4\}$, and consider the function

$$X(\boldsymbol{\omega}) := I_{\{1,4\}}(\boldsymbol{\omega}) + \boldsymbol{\omega}I_{\{2,3\}}(\boldsymbol{\omega}),$$

which takes the values 1, 2, and 3. If there is a suitable σ -algebra of Ω on which a probability measure P is defined, then we can write

$$\mathsf{E}[X] = \mathsf{P}(\{1,4\}) + 2\mathsf{P}(\{2\}) + 3\mathsf{P}(\{3\}).$$

Of course, the σ -algebra of all subsets of Ω will work. Is there is a smaller σ -algebra will work? **Justify your answer** — explain your reasoning.

- 2. Let *Y* be an exponential random variable with parameter one, and given Y = y, suppose *X* is conditionally Cauchy(*y*). Compute $E[Y^n \cos(X)]$. Evaluate all integrals.
- 3. Let $X = [X_1, ..., X_n]'$ be Gaussian random vector with zero mean and nonsingular covariance matrix *C* whose *i j* entry is denoted by C_{ij} . Let $b = [b_1, ..., b_n]'$ be a deterministic, nonzero vector, and put Y := b'X. Compute $E[X_1|Y = y]$. Your answer should be in terms of *y*, *C*, and *b* (or the entries C_{ij} and b_j). Explain your reasoning; justify your analysis.
- 4. Let *X* and *Y* be zero-mean random vectors with covariance matrices C_X , C_Y , and C_{XY} . Let *A* and *B* be deterministic matrices that satisfy

$$AC_Y = C_{XY}$$
 and $BC_Y = C_{XY}$.

If C_Y is singular, is $E[||AY - BY||^2] = 0$? Justify your answer.

5. A new digital energy detector for radio transmissions takes two independent samples X and Y and triggers an alarm if the total energy $X^2 + Y^2$ exceeds a given threshold t. If X and Y are both N(0,1), find the probability that the alarm is triggered. **Evaluate all integrals.**