ECE 730
 Exam 1
 25 October 2012
 5:00-6:30 pm in 2255 EH

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring one sheet of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

1. Let $\Omega:=\{1,2,3,4\}$, and consider the function

$$
X(\omega):=I_{\{1,4\}}(\omega)+\omega I_{\{2,3\}}(\omega)
$$

which takes the values 1,2 , and 3 . If there is a suitable σ-algebra of Ω on which a probability measure P is defined, then we can write

$$
\mathrm{E}[X]=\mathrm{P}(\{1,4\})+2 \mathrm{P}(\{2\})+3 \mathrm{P}(\{3\}) .
$$

Of course, the σ-algebra of all subsets of Ω will work. Is there is a smaller σ-algebra will work? Justify your answer - explain your reasoning.
2. Let Y be an exponential random variable with parameter one, and given $Y=y$, suppose X is conditionally Cauchy (y). Compute $\mathrm{E}\left[Y^{n} \cos (X)\right]$. Evaluate all integrals.
3. Let $X=\left[X_{1}, \ldots, X_{n}\right]^{\prime}$ be Gaussian random vector with zero mean and nonsingular covariance matrix C whose $i j$ entry is denoted by $C_{i j}$. Let $b=\left[b_{1}, \ldots, b_{n}\right]^{\prime}$ be a deterministic, nonzero vector, and put $Y:=b^{\prime} X$. Compute $\mathrm{E}\left[X_{1} \mid Y=y\right]$. Your answer should be in terms of y, C, and b (or the entries $C_{i j}$ and b_{j}). Explain your reasoning; justify your analysis.
4. Let X and Y be zero-mean random vectors with covariance matrices C_{X}, C_{Y}, and $C_{X Y}$. Let A and B be deterministic matrices that satisfy

$$
A C_{Y}=C_{X Y} \quad \text { and } \quad B C_{Y}=C_{X Y}
$$

If C_{Y} is singular, is $\mathrm{E}\left[\|A Y-B Y\|^{2}\right]=0$? Justify your answer.
5. A new digital energy detector for radio transmissions takes two independent samples X and Y and triggers an alarm if the total energy $X^{2}+Y^{2}$ exceeds a given threshold t. If X and Y are both $N(0,1)$, find the probability that the alarm is triggered. Evaluate all integrals.

