ECE 730 Final Exam 21 December 2012 5:05–7:05 pm in 2317 EH

100 Points

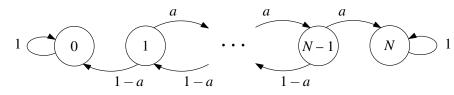
Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring two sheets of 8.5 in. \times 11 in. paper on which you have prepared formulas. 1. Consider the discrete-time Markov chain with state transition diagram below:



where $0 \le a \le 1$. Are there any values of *a* for which X_n is a martingale with respect to itself? **Justify your answer.**

- 2. Let *X* and *Y* be random variables with $X \in L^1$. Let *q* be an invertible function, and put Z := q(Y). Put $\widehat{g}(y) := E[X|Y = y]$. Determine whether or not $E[X|Z] = \widehat{g}(q^{-1}(Z))$. Justify your answer.
- 3. Let *X* be a zero-mean Gaussian random vector with invertible covariance matrix *C*. For t > 0, put

$$B_t := \{x : x'C^{-1}x > t\}.$$

If *X* has dimension 2*n*, find a simple formula (no integrals) for $P(X \in B_t)$.

4. Let N_t be a Poisson process with intensity λ . Put $Y_t := g(N_t)$, where

$$g(x) := \begin{cases} x, & 0 \le x < 1, \\ 1+x, & x \ge 1. \end{cases}$$

For $0 \le s < t < \infty$, compute $\mathsf{E}[g(N_t) - g(N_s)]$.

5. Let m_n be an arbitrary sequence of real numbers, and let σ_n be an arbitrary sequence of positive numbers. Let X be a Laplace random variable with parameter $\lambda = 1$. Define a sequence of random variables $Y_n := \sigma_n X + m_n$. Assume Y_n converges in mean of order 2 to some random variable Y. Determine whether or not Y is a continuous random variable. Justify your answer.