ECE 730
 Final Exam
 21 December 2012
 5:05-7:05 pm in 2317 EH

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring two sheets of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

1. Consider the discrete-time Markov chain with state transition diagram below:

where $0 \leq a \leq 1$. Are there any values of a for which X_{n} is a martingale with respect to itself? Justify your answer.

Solution. We must determine whether or not $\mathrm{E}\left[X_{n+1} \mid X_{n}, \ldots, X_{0}\right]=X_{n}$. By the Markov property, $\mathrm{E}\left[X_{n+1} \mid X_{n}, \ldots, X_{0}\right]=\mathrm{E}\left[X_{n+1} \mid X_{n}\right]$. To be a martingale, we must show that $\mathrm{E}\left[X_{n+1} \mid X_{n}=i\right]=i$ for $i=0, \ldots, N$. First note that

$$
\mathrm{E}\left[X_{n+1} \mid X_{n}=0\right]=0 \quad \text { and } \quad \mathrm{E}\left[X_{n+1} \mid X_{n}=N\right]=N .
$$

For $0<i<N$,

$$
\mathrm{E}\left[X_{n+1} \mid X_{n}=i\right]=\sum_{j} j p_{i j}=(i+1) a+(i-1)(1-a)=a i+a+i-1-a i+a=i+2 a-1
$$

Putting these two formulas together yields

$$
\mathrm{E}\left[X_{n+1} \mid X_{n}=i\right]=i+(2 a-1) I_{\{1, \ldots, N-1\}}(i),
$$

which implies

$$
\mathrm{E}\left[X_{n+1} \mid X_{n}\right]=X_{n}+(2 a-1) I_{\{1, \ldots, N-1\}}\left(X_{n}\right) .
$$

So the only possible value of a is $a=1 / 2$.
2. Let X and Y be random variables with $X \in L^{1}$. Let q be an invertible function, and put $Z:=q(Y)$. Put $\widehat{g}(y):=\mathrm{E}[X \mid Y=y]$. Determine whether or not $\mathrm{E}[X \mid Z]=\widehat{g}\left(q^{-1}(Z)\right)$. Justify your answer.

Solution. The most direct solution is obtained by writing

$$
\begin{aligned}
\mathrm{E}[X \mid Z] & =\mathrm{E}[X \mid q(Y)], & & \text { since } Z:=q(Y), \\
& =\mathrm{E}[\mathrm{E}[X \mid Y] \mid q(Y)], & & \text { by the smoothing property }(13.28), \\
& =\mathrm{E}[\widehat{g}(Y) \mid Z], & & \text { since } \widehat{g}(Y)=\mathrm{E}[X \mid Y] \text { and } Z:=q(Y), \\
& =\mathrm{E}\left[\widehat{g}\left(q^{-1}(Z)\right) \mid Z\right], & & \text { since } Y=q^{-1}(Z), \\
& =\widehat{g}\left(q^{-1}(Z)\right), & & \text { by Problem } 13.56 .
\end{aligned}
$$

Alternative Solution. The characterizing equation for $\mathrm{E}[X \mid Z]$ is

$$
\mathrm{E}[X h(Z)]=\mathrm{E}[\mathrm{E}[X \mid Z] h(Z)], \quad \text { for every bounded function } h .
$$

By uniqueness of conditional expectation, it suffices to show that for all bounded functions $h(z)$,

$$
\mathrm{E}[X h(Z)]=\mathrm{E}\left[\widehat{g}\left(q^{-1}(Z)\right) h(Z)\right] .
$$

Write

$$
\begin{aligned}
\mathrm{E}[X h(Z)] & =\mathrm{E}[X h(q(Y))], & & \text { since } Z=q(Y), \\
& =\mathrm{E}[\mathrm{E}[X \mid Y] h(q(Y))], & & \text { by the characterizing equation for } \mathrm{E}[X \mid Y], \\
& =\mathrm{E}[\widehat{g}(Y) h(q(Y))], & & \text { by definition of } \widehat{g}, \\
& =\mathrm{E}\left[\widehat{g}\left(q^{-1}(Z)\right) h(Z)\right], & & \text { since } Y=q^{-1}(Z) .
\end{aligned}
$$

3. Let X be a zero-mean Gaussian random vector with invertible covariance matrix C. For $t>0$, put

$$
B_{t}:=\left\{x: x^{\prime} C^{-1} x>t\right\} .
$$

If X has dimension $2 n$, find a simple formula (no integrals) for $\mathrm{P}\left(X \in B_{t}\right)$.
Solution. First observe that $\mathrm{P}\left(X \in B_{t}\right)=\mathrm{P}\left(\left\|C^{-1 / 2} X\right\|^{2}>t\right)$. Then put $Y:=C^{-1 / 2} X$ so that Y is Gaussian with zero mean and covariance $C^{-1 / 2} C C^{-1 / 2}=I$. Thus, $\|Y\|^{2}$ is chi-squared with $2 n$ degrees of freedom; equivalently $\|Y\|^{2}$ is $\operatorname{Erlang}(n, 1 / 2)$. Hence,

$$
\mathrm{P}\left(\|Y\|^{2}>t\right)=\sum_{k=0}^{n-1} \frac{(t / 2)^{k}}{k!} e^{-t / 2}
$$

Alternative Solution. Let $X=P Y$ be the Karhunen-Loève expansion of X, where $P^{\prime} C P=$ $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{2 n}\right)$. Then

$$
\mathrm{P}\left(X \in B_{t}\right)=\mathrm{P}\left(X^{\prime} C^{-1} X>t\right)=\mathrm{P}\left((P Y)^{\prime} C^{-1}(P Y)>t\right)=\mathrm{P}\left(Y^{\prime} \Lambda^{-1} Y>t\right)=\mathrm{P}\left(\sum_{k=1}^{2 n} \frac{Y_{k}^{2}}{\lambda_{k}}>t\right)
$$

Since $Y=P^{\prime} X$ is Gaussian, so is $\Lambda^{-1 / 2} Y$. Since $Y_{k} / \sqrt{\lambda_{k}} \sim N(0,1)$, this last sum is chi-squared with $2 n$ degrees of freedom, and the solution finishes as above.
4. Let N_{t} be a Poisson process with intensity λ. Put $Y_{t}:=g\left(N_{t}\right)$, where

$$
g(x):=\left\{\begin{aligned}
x, & 0 \leq x<1 \\
1+x, & x \geq 1
\end{aligned}\right.
$$

For $0 \leq s<t<\infty$, compute $\mathrm{E}\left[g\left(N_{t}\right)-g\left(N_{s}\right)\right]$.
Solution. The most direct solution is obtained by observing that

$$
\mathrm{E}\left[g\left(N_{t}\right)\right]=\sum_{n=0}^{\infty} g(n) \mathrm{P}\left(N_{t}=n\right)=\sum_{n=1}^{\infty}(1+n) \mathrm{P}\left(N_{t}=n\right)=\left[1-\mathrm{P}\left(N_{t}=0\right)\right]+\mathrm{E}\left[N_{t}\right]=1-e^{-\lambda t}+\lambda t .
$$

Then

$$
\mathrm{E}\left[g\left(N_{t}\right)-g\left(N_{s}\right)\right]=\mathrm{E}\left[g\left(N_{t}\right)\right]-\mathrm{E}\left[g\left(N_{s}\right)\right]=e^{-\lambda s}-e^{-\lambda t}+\lambda(t-s) .
$$

Alternative Solution. To use the law of total probability, we first compute

$$
\mathrm{E}\left[g\left(N_{t}\right)-g\left(N_{s}\right) \mid N_{s}=n\right] .
$$

Since $s<t$ implies $N_{s}<N_{t}$, if $N_{s}=n \geq 1$, then $N_{t} \geq 1$ as well. Hence, for $n \geq 1$,

$$
\begin{aligned}
\mathrm{E}\left[g\left(N_{t}\right)-g\left(N_{s}\right) \mid N_{s}=n\right] & =\mathrm{E}\left[\left(1+N_{t}\right)-\left(1+N_{s}\right) \mid N_{s}=n\right] \\
& =\mathrm{E}\left[N_{t}-N_{s} \mid N_{s}=n\right] \\
& =\mathrm{E}\left[N_{t}-N_{s} \mid N_{s}-N_{0}=n\right]=\mathrm{E}\left[N_{t}-N_{s}\right]=\lambda(t-s) .
\end{aligned}
$$

However, for $n=0$,

$$
\begin{aligned}
\mathrm{E}\left[g\left(N_{t}\right)-g\left(N_{s}\right) \mid N_{s}=0\right] & =\mathrm{E}\left[g\left(N_{t}\right) \mid N_{s}=0\right] \\
& =\mathrm{E}\left[g\left(N_{t}-N_{s}\right) \mid N_{s}=0\right] \\
& =\mathrm{E}\left[g\left(N_{t}-N_{s}\right) \mid N_{s}-N_{0}=0\right] \\
& =\mathrm{E}\left[g\left(N_{t}-N_{s}\right)\right] \\
& =\sum_{k=0}^{\infty} g(k) \mathrm{P}\left(N_{t}-N_{s}=k\right) \\
& =\sum_{k=1}^{\infty}(1+k) \mathrm{P}\left(N_{t}-N_{s}=k\right) \\
& =\left\{1-\mathrm{P}\left(N_{t}-N_{s}=0\right)\right\}+\mathrm{E}\left[N_{t}-N_{s}\right] \\
& =\left[1-e^{-\lambda(t-s)}\right]+\lambda(t-s) .
\end{aligned}
$$

We can now write

$$
\begin{aligned}
\mathrm{E}\left[g\left(N_{t}\right)-g\left(N_{s}\right)\right] & =\sum_{n=0}^{\infty} \mathrm{E}\left[g\left(N_{t}\right)-g\left(N_{s}\right) \mid N_{s}=n\right] \mathrm{P}\left(N_{s}=n\right) \\
& =\left[1-e^{-\lambda(t-s)}\right] \mathrm{P}\left(N_{s}=0\right)+\lambda(t-s) \\
& =\left[1-e^{-\lambda(t-s)}\right] e^{-\lambda s}+\lambda(t-s) \\
& =e^{-\lambda s}-e^{-\lambda t}+\lambda(t-s) .
\end{aligned}
$$

5. Let m_{n} be an arbitrary sequence of real numbers, and let σ_{n} be an arbitrary sequence of positive numbers. Let X be a Laplace random variable with parameter $\lambda=1$. Define a sequence of random variables $Y_{n}:=\sigma_{n} X+m_{n}$. Assume Y_{n} converges in mean of order 2 to some random variable Y. Determine whether or not Y is a continuous random variable. Justify your answer.
Solution. It is not necessary for Y to be a continuous random variable. To see this, consider the case $m_{n}=m$ for all n and $\sigma_{n}=1 / n$. Then $Y_{n}=X / n+m$, and $\mathrm{E}\left[\left|Y_{n}-m\right|^{2}\right]=\mathrm{E}\left[X^{2}\right] / n^{2}=$ $2 / n^{2} \rightarrow 0$. Thus, Y_{n} converges in mean of order 2 to the constant random variable $Y \equiv m$, which is not a continuous random variable.

A more complete understanding of what is going on is obtained by using the fact that convergence in mean of order 2 implies convergence in distribution. Hence, $\varphi_{Y_{n}}(v) \rightarrow \varphi_{Y}(v)$ for all v. Since $\varphi_{Y_{n}}(v)=e^{j v m_{n}} /\left(1+\sigma_{n}^{2} v^{2}\right)$, we would like to say that $\varphi_{Y}(v)=e^{j v m} /\left(1+\sigma^{2} v^{2}\right)$. The difficulty is that we first have to show m_{n} and σ_{n} both converge to finite limits, which we will
call m and σ, respectively. A similar difficulty arises if we observe that

$$
\begin{equation*}
F_{Y_{n}}(y)=\mathrm{P}\left(Y_{n} \leq y\right)=\mathrm{P}\left(\sigma_{n} X+m_{n} \leq y\right)=\mathrm{P}\left(X \leq \frac{y-m_{n}}{\sigma_{n}}\right)=F_{X}\left(\frac{y-m_{n}}{\sigma_{n}}\right) \tag{*}
\end{equation*}
$$

and then want to write $F_{Y_{n}}(y) \rightarrow F_{X}((y-m) / \sigma)$.
To show that m_{n} and σ_{n} converge, we argue as follows. By Example 13.11, $\mathrm{E}\left[Y_{n}\right] \rightarrow \mathrm{E}[Y]$, and by Problem 13.22, $\mathrm{E}\left[Y_{n}^{2}\right] \rightarrow \mathrm{E}\left[Y^{2}\right]$. Also, $\mathrm{E}\left[Y_{n}\right] \rightarrow \mathrm{E}[Y]$ implies $\left(\mathrm{E}\left[Y_{n}\right]\right)^{2} \rightarrow(\mathrm{E}[Y])^{2}$. Hence,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathrm{E}\left[Y_{n}^{2}\right]-\left(\mathrm{E}\left[Y_{n}\right]\right)^{2} & =\lim _{n \rightarrow \infty} \mathrm{E}\left[Y_{n}^{2}\right]-\lim _{n \rightarrow \infty}\left(\mathrm{E}\left[Y_{n}\right]\right)^{2} \\
& =\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2} .
\end{aligned}
$$

In this particular problem, $\mathrm{E}\left[Y_{n}\right]=m_{n}$ and $\mathrm{E}\left[Y_{n}^{2}\right]=2 \sigma_{n}^{2}+m_{n}^{2}$. Thus, $m_{n} \rightarrow \mathrm{E}[Y]$, and

$$
\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2}=\lim _{n \rightarrow \infty} \mathrm{E}\left[Y_{n}^{2}\right]-\left(\mathrm{E}\left[Y_{n}\right]\right)^{2}=\lim _{n \rightarrow \infty}\left(2 \sigma_{n}^{2}+m_{n}^{2}\right)-m_{n}^{2}=\lim _{n \rightarrow \infty} 2 \sigma_{n}^{2}
$$

It follows that $\sigma_{n} \rightarrow \sqrt{\left\{\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2}\right\} / 2}$. Now that we know these limits exist, we put

$$
m:=\lim _{n \rightarrow \infty} m_{n}=\mathrm{E}[Y] \quad \text { and } \quad \sigma:=\lim _{n \rightarrow \infty} \sigma_{n}=\sqrt{\left\{\mathrm{E}\left[Y^{2}\right]-(\mathrm{E}[Y])^{2}\right\} / 2} .
$$

Now, whether we consider $e^{j v m} /\left(1+\sigma^{2} v^{2}\right)$ or $F_{X}((y-m) / \sigma)$, there are two cases to analyze. First, if $\sigma>0$, then both formulas tell us that Y has density $f_{X}((x-m) / \sigma) / \sigma$, which means that Y is a continuous random variable. On the other hand, if $\sigma=0$, then $\varphi_{Y}(v)=e^{j v m}$ is the characteristic function of the constant random variable $Y \equiv m$. We reach the same conclusion using $(*)$: If $\sigma_{n} \rightarrow 0$, then $(*)$ tells us that $F_{Y_{n}}(y) \rightarrow F_{X}(\infty)=1$ if $y>m$ and $F_{Y_{n}}(y) \rightarrow F_{X}(-\infty)=$ 0 if $y<m$, which tells us that $Y_{n} \equiv m$.

