## ECE 730 Final Exam 21 December 2012 5:05–7:05 pm in 2317 EH

## **100 Points**

Justify your answers!

**Be precise!** 

**Closed Book** 

**Closed Notes** 

You may bring two sheets of 8.5 in.  $\times$  11 in. paper on which you have prepared formulas. 1. Consider the discrete-time Markov chain with state transition diagram below:



where  $0 \le a \le 1$ . Are there any values of *a* for which  $X_n$  is a martingale with respect to itself? **Justify your answer.** 

**Solution.** We must determine whether or not  $E[X_{n+1}|X_n, ..., X_0] = X_n$ . By the Markov property,  $E[X_{n+1}|X_n, ..., X_0] = E[X_{n+1}|X_n]$ . To be a martingale, we must show that  $E[X_{n+1}|X_n = i] = i$  for i = 0, ..., N. First note that

$$\mathsf{E}[X_{n+1}|X_n = 0] = 0$$
 and  $\mathsf{E}[X_{n+1}|X_n = N] = N$ .

For 0 < i < N,

$$\mathsf{E}[X_{n+1}|X_n=i] = \sum_j jp_{ij} = (i+1)a + (i-1)(1-a) = ai + a + i - 1 - ai + a = i + 2a - 1.$$

Putting these two formulas together yields

$$\mathsf{E}[X_{n+1}|X_n=i] = i + (2a-1)I_{\{1,\dots,N-1\}}(i),$$

which implies

$$\mathsf{E}[X_{n+1}|X_n] = X_n + (2a-1)I_{\{1,\dots,N-1\}}(X_n)$$

So the only possible value of *a* is a = 1/2.

2. Let *X* and *Y* be random variables with  $X \in L^1$ . Let *q* be an invertible function, and put Z := q(Y). Put  $\widehat{g}(y) := \mathsf{E}[X|Y = y]$ . Determine whether or not  $\mathsf{E}[X|Z] = \widehat{g}(q^{-1}(Z))$ . Justify your answer.

Solution. The most direct solution is obtained by writing

$$\begin{split} \mathsf{E}[X|Z] &= \mathsf{E}[X|q(Y)], & \text{since } Z := q(Y), \\ &= \mathsf{E}\big[\mathsf{E}[X|Y]\big|q(Y)\big], & \text{by the smoothing property (13.28),} \\ &= \mathsf{E}[\widehat{g}(Y)|Z], & \text{since } \widehat{g}(Y) = \mathsf{E}[X|Y] \text{ and } Z := q(Y), \\ &= \mathsf{E}[\widehat{g}(q^{-1}(Z))|Z], & \text{since } Y = q^{-1}(Z), \\ &= \widehat{g}(q^{-1}(Z)), & \text{by Problem 13.56.} \end{split}$$

Alternative Solution. The characterizing equation for E[X|Z] is

 $\mathsf{E}[Xh(Z)] = \mathsf{E}[\mathsf{E}[X|Z]h(Z)],$  for every bounded function *h*.

By uniqueness of conditional expectation, it suffices to show that for all bounded functions h(z),

$$\mathsf{E}[Xh(Z)] = \mathsf{E}[\widehat{g}(q^{-1}(Z))h(Z)].$$

Write

$$\begin{split} \mathsf{E}[Xh(Z)] &= \mathsf{E}[Xh(q(Y))], & \text{since } Z = q(Y), \\ &= \mathsf{E}\big[\mathsf{E}[X|Y]h(q(Y))\big], & \text{by the characterizing equation for } \mathsf{E}[X|Y], \\ &= \mathsf{E}\big[\widehat{g}(Y)h(q(Y))\big], & \text{by definition of } \widehat{g}, \\ &= \mathsf{E}\big[\widehat{g}(q^{-1}(Z))h(Z)\big], & \text{since } Y = q^{-1}(Z). \end{split}$$

3. Let *X* be a zero-mean Gaussian random vector with invertible covariance matrix *C*. For t > 0, put

$$B_t := \{x : x'C^{-1}x > t\}.$$

If *X* has dimension 2*n*, find a simple formula (no integrals) for  $P(X \in B_t)$ .

*Solution.* First observe that  $P(X \in B_t) = P(||C^{-1/2}X||^2 > t)$ . Then put  $Y := C^{-1/2}X$  so that *Y* is Gaussian with zero mean and covariance  $C^{-1/2}CC^{-1/2} = I$ . Thus,  $||Y||^2$  is chi-squared with 2*n* degrees of freedom; equivalently  $||Y||^2$  is Erlang(n, 1/2). Hence,

$$\mathsf{P}(||Y||^2 > t) = \sum_{k=0}^{n-1} \frac{(t/2)^k}{k!} e^{-t/2}$$

Alternative Solution. Let X = PY be the Karhunen–Loève expansion of X, where  $P'CP = \Lambda = \text{diag}(\lambda_1, \dots, \lambda_{2n})$ . Then

$$\mathsf{P}(X \in B_t) = \mathsf{P}(X'C^{-1}X > t) = \mathsf{P}((PY)'C^{-1}(PY) > t) = \mathsf{P}(Y'\Lambda^{-1}Y > t) = \mathsf{P}\left(\sum_{k=1}^{2n} \frac{Y_k^2}{\lambda_k} > t\right).$$

Since Y = P'X is Gaussian, so is  $\Lambda^{-1/2}Y$ . Since  $Y_k/\sqrt{\lambda_k} \sim N(0,1)$ , this last sum is chi-squared with 2n degrees of freedom, and the solution finishes as above.

4. Let  $N_t$  be a Poisson process with intensity  $\lambda$ . Put  $Y_t := g(N_t)$ , where

$$g(x) := \begin{cases} x, & 0 \le x < 1, \\ 1+x, & x \ge 1. \end{cases}$$

For  $0 \le s < t < \infty$ , compute  $\mathsf{E}[g(N_t) - g(N_s)]$ .

Solution. The most direct solution is obtained by observing that

$$\mathsf{E}[g(N_t)] = \sum_{n=0}^{\infty} g(n) \mathsf{P}(N_t = n) = \sum_{n=1}^{\infty} (1+n) \mathsf{P}(N_t = n) = [1 - \mathsf{P}(N_t = 0)] + \mathsf{E}[N_t] = 1 - e^{-\lambda t} + \lambda t.$$

Then

$$\mathsf{E}[g(N_t) - g(N_s)] = \mathsf{E}[g(N_t)] - \mathsf{E}[g(N_s)] = e^{-\lambda s} - e^{-\lambda t} + \lambda(t-s).$$

Alternative Solution. To use the law of total probability, we first compute

$$\mathsf{E}[g(N_t) - g(N_s)|N_s = n].$$

Since *s* < *t* implies  $N_s < N_t$ , if  $N_s = n \ge 1$ , then  $N_t \ge 1$  as well. Hence, for  $n \ge 1$ ,

$$E[g(N_t) - g(N_s)|N_s = n] = E[(1 + N_t) - (1 + N_s)|N_s = n]$$
  
=  $E[N_t - N_s|N_s = n]$   
=  $E[N_t - N_s|N_s - N_0 = n] = E[N_t - N_s] = \lambda(t - s).$ 

However, for n = 0,

$$E[g(N_t) - g(N_s)|N_s = 0] = E[g(N_t)|N_s = 0]$$
  
=  $E[g(N_t - N_s)|N_s = 0]$   
=  $E[g(N_t - N_s)|N_s - N_0 = 0]$   
=  $E[g(N_t - N_s)]$   
=  $\sum_{k=0}^{\infty} g(k)P(N_t - N_s = k)$   
=  $\sum_{k=1}^{\infty} (1+k)P(N_t - N_s = k)$   
=  $\{1 - P(N_t - N_s = 0)\} + E[N_t - N_s]$   
=  $[1 - e^{-\lambda(t-s)}] + \lambda(t-s).$ 

We can now write

$$\begin{aligned} \mathsf{E}[g(N_t) - g(N_s)] &= \sum_{n=0}^{\infty} \mathsf{E}[g(N_t) - g(N_s) | N_s = n] \mathsf{P}(N_s = n) \\ &= \left[1 - e^{-\lambda(t-s)}\right] \mathsf{P}(N_s = 0) + \lambda(t-s) \\ &= \left[1 - e^{-\lambda(t-s)}\right] e^{-\lambda s} + \lambda(t-s) \\ &= e^{-\lambda s} - e^{-\lambda t} + \lambda(t-s). \end{aligned}$$

5. Let  $m_n$  be an arbitrary sequence of real numbers, and let  $\sigma_n$  be an arbitrary sequence of positive numbers. Let X be a Laplace random variable with parameter  $\lambda = 1$ . Define a sequence of random variables  $Y_n := \sigma_n X + m_n$ . Assume  $Y_n$  converges in mean of order 2 to some random variable Y. Determine whether or not Y is a continuous random variable. Justify your answer.

**Solution.** It is *not* necessary for *Y* to be a continuous random variable. To see this, consider the case  $m_n = m$  for all *n* and  $\sigma_n = 1/n$ . Then  $Y_n = X/n + m$ , and  $E[|Y_n - m|^2] = E[X^2]/n^2 = 2/n^2 \rightarrow 0$ . Thus,  $Y_n$  converges in mean of order 2 to the constant random variable  $Y \equiv m$ , which is not a continuous random variable.

A more complete understanding of what is going on is obtained by using the fact that convergence in mean of order 2 implies convergence in distribution. Hence,  $\varphi_{Y_n}(v) \rightarrow \varphi_Y(v)$  for all v. Since  $\varphi_{Y_n}(v) = e^{jvm_n}/(1+\sigma_n^2v^2)$ , we would like to say that  $\varphi_Y(v) = e^{jvm}/(1+\sigma^2v^2)$ . The difficulty is that we first have to show  $m_n$  and  $\sigma_n$  both converge to finite limits, which we will

call *m* and  $\sigma$ , respectively. A similar difficulty arises if we observe that

$$F_{Y_n}(y) = \mathsf{P}(Y_n \le y) = \mathsf{P}(\sigma_n X + m_n \le y) = \mathsf{P}\left(X \le \frac{y - m_n}{\sigma_n}\right) = F_X\left(\frac{y - m_n}{\sigma_n}\right) \tag{*}$$

and then want to write  $F_{Y_n}(y) \to F_X((y-m)/\sigma)$ .

To show that  $m_n$  and  $\sigma_n$  converge, we argue as follows. By Example 13.11,  $\mathsf{E}[Y_n] \to \mathsf{E}[Y]$ , and by Problem 13.22,  $\mathsf{E}[Y_n^2] \to \mathsf{E}[Y^2]$ . Also,  $\mathsf{E}[Y_n] \to \mathsf{E}[Y]$  implies  $(\mathsf{E}[Y_n])^2 \to (\mathsf{E}[Y])^2$ . Hence,

$$\lim_{n \to \infty} \mathsf{E}[Y_n^2] - (\mathsf{E}[Y_n])^2 = \lim_{n \to \infty} \mathsf{E}[Y_n^2] - \lim_{n \to \infty} (\mathsf{E}[Y_n])^2$$
$$= \mathsf{E}[Y^2] - (\mathsf{E}[Y])^2.$$

In this particular problem,  $\mathsf{E}[Y_n] = m_n$  and  $\mathsf{E}[Y_n^2] = 2\sigma_n^2 + m_n^2$ . Thus,  $m_n \to \mathsf{E}[Y]$ , and

$$\mathsf{E}[Y^{2}] - (\mathsf{E}[Y])^{2} = \lim_{n \to \infty} \mathsf{E}[Y_{n}^{2}] - (\mathsf{E}[Y_{n}])^{2} = \lim_{n \to \infty} (2\sigma_{n}^{2} + m_{n}^{2}) - m_{n}^{2} = \lim_{n \to \infty} 2\sigma_{n}^{2}.$$

It follows that  $\sigma_n \to \sqrt{\{\mathsf{E}[Y^2] - (\mathsf{E}[Y])^2\}/2}$ . Now that we know these limits exist, we put

$$m := \lim_{n \to \infty} m_n = \mathsf{E}[Y]$$
 and  $\sigma := \lim_{n \to \infty} \sigma_n = \sqrt{\{\mathsf{E}[Y^2] - (\mathsf{E}[Y])^2\}/2}.$ 

Now, whether we consider  $e^{j\nu m}/(1 + \sigma^2 \nu^2)$  or  $F_X((y-m)/\sigma)$ , there are two cases to analyze. First, if  $\sigma > 0$ , then both formulas tell us that *Y* has density  $f_X((x-m)/\sigma)/\sigma$ , which means that *Y* is a continuous random variable. On the other hand, if  $\sigma = 0$ , then  $\varphi_Y(\nu) = e^{j\nu m}$  is the characteristic function of the constant random variable  $Y \equiv m$ . We reach the same conclusion using (\*): If  $\sigma_n \to 0$ , then (\*) tells us that  $F_{Y_n}(y) \to F_X(\infty) = 1$  if y > m and  $F_{Y_n}(y) \to F_X(-\infty) = 0$  if y < m, which tells us that  $Y_n \equiv m$ .