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Justify your answers! Be precise!

Closed Book Closed Notes

You may bring two sheets of 8.5 in. × 11 in. paper
on which you have prepared formulas.
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1. Consider the discrete-time Markov chain with state transition diagram below:
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where 0≤ a≤ 1. Are there any values of a for which Xn is a martingale with respect to itself?
Justify your answer.

Solution. We must determine whether or not E[Xn+1|Xn, . . . ,X0] = Xn. By the Markov property,
E[Xn+1|Xn, . . . ,X0] = E[Xn+1|Xn]. To be a martingale, we must show that E[Xn+1|Xn = i] = i for
i = 0, . . . ,N. First note that

E[Xn+1|Xn = 0] = 0 and E[Xn+1|Xn = N] = N.

For 0 < i < N,

E[Xn+1|Xn = i] = ∑
j

jpi j = (i+1)a+(i−1)(1−a) = ai+a+ i−1−ai+a = i+2a−1.

Putting these two formulas together yields

E[Xn+1|Xn = i] = i+(2a−1)I{1,...,N−1}(i),

which implies
E[Xn+1|Xn] = Xn +(2a−1)I{1,...,N−1}(Xn).

So the only possible value of a is a = 1/2.

2. Let X and Y be random variables with X ∈ L1. Let q be an invertible function, and put Z := q(Y ).
Put ĝ(y) := E[X |Y = y]. Determine whether or not E[X |Z] = ĝ(q−1(Z)). Justify your answer.

Solution. The most direct solution is obtained by writing

E[X |Z] = E[X |q(Y )], since Z := q(Y ),
= E
[
E[X |Y ]

∣∣q(Y )], by the smoothing property (13.28),
= E[ĝ(Y )|Z], since ĝ(Y ) = E[X |Y ] and Z := q(Y ),
= E[ĝ(q−1(Z))|Z], since Y = q−1(Z),
= ĝ(q−1(Z)), by Problem 13.56.

Alternative Solution. The characterizing equation for E[X |Z] is

E[Xh(Z)] = E
[
E[X |Z]h(Z)

]
, for every bounded function h.

By uniqueness of conditional expectation, it suffices to show that for all bounded functions h(z),

E[Xh(Z)] = E[ĝ(q−1(Z))h(Z)].
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Write

E[Xh(Z)] = E[Xh(q(Y ))], since Z = q(Y ),
= E
[
E[X |Y ]h(q(Y ))

]
, by the characterizing equation for E[X |Y ],

= E
[
ĝ(Y )h(q(Y ))

]
, by definition of ĝ,

= E
[
ĝ(q−1(Z))h(Z)

]
, since Y = q−1(Z).

3. Let X be a zero-mean Gaussian random vector with invertible covariance matrix C. For t > 0,
put

Bt := {x : x′C−1x > t}.
If X has dimension 2n, find a simple formula (no integrals) for P(X ∈ Bt).

Solution. First observe that P(X ∈ Bt) = P(‖C−1/2X‖2 > t). Then put Y :=C−1/2X so that Y
is Gaussian with zero mean and covariance C−1/2CC−1/2 = I. Thus, ‖Y‖2 is chi-squared with
2n degrees of freedom; equivalently ‖Y‖2 is Erlang(n,1/2). Hence,

P(‖Y‖2 > t) =
n−1

∑
k=0

(t/2)k

k!
e−t/2.

Alternative Solution. Let X = PY be the Karhunen–Loève expansion of X , where P′CP =
Λ = diag(λ1, . . . ,λ2n). Then

P(X ∈ Bt) = P(X ′C−1X > t) = P
(
(PY )′C−1(PY )> t

)
= P(Y ′Λ−1Y > t) = P

( 2n

∑
k=1

Y 2
k

λk
> t
)
.

Since Y = P′X is Gaussian, so is Λ−1/2Y . Since Yk/
√

λk ∼ N(0,1), this last sum is chi-squared
with 2n degrees of freedom, and the solution finishes as above.

4. Let Nt be a Poisson process with intensity λ . Put Yt := g(Nt), where

g(x) :=
{

x, 0≤ x < 1,
1+ x, x≥ 1.

For 0≤ s < t < ∞, compute E[g(Nt)−g(Ns)].

Solution. The most direct solution is obtained by observing that

E[g(Nt)] =
∞

∑
n=0

g(n)P(Nt = n) =
∞

∑
n=1

(1+n)P(Nt = n) = [1−P(Nt = 0)]+E[Nt ] = 1−e−λ t +λ t.

Then
E[g(Nt)−g(Ns)] = E[g(Nt)]−E[g(Ns)] = e−λ s− e−λ t +λ (t− s).

Alternative Solution. To use the law of total probability, we first compute

E[g(Nt)−g(Ns)|Ns = n].



ECE 730, Lec. 1 Final Exam Friday, 21 December 2012 5:05–7:05 pm in 2317 EH Page 3

Since s < t implies Ns < Nt , if Ns = n≥ 1, then Nt ≥ 1 as well. Hence, for n≥ 1,

E[g(Nt)−g(Ns)|Ns = n] = E[(1+Nt)− (1+Ns)|Ns = n]
= E[Nt−Ns|Ns = n]
= E[Nt−Ns|Ns−N0 = n] = E[Nt−Ns] = λ (t− s).

However, for n = 0,

E[g(Nt)−g(Ns)|Ns = 0] = E[g(Nt)|Ns = 0]
= E[g(Nt−Ns)|Ns = 0]
= E[g(Nt−Ns)|Ns−N0 = 0]
= E[g(Nt−Ns)]

=
∞

∑
k=0

g(k)P(Nt−Ns = k)

=
∞

∑
k=1

(1+ k)P(Nt−Ns = k)

=
{

1−P(Nt−Ns = 0)
}
+E[Nt−Ns]

=
[
1− e−λ (t−s)]+λ (t− s).

We can now write

E[g(Nt)−g(Ns)] =
∞

∑
n=0

E[g(Nt)−g(Ns)|Ns = n]P(Ns = n)

=
[
1− e−λ (t−s)]P(Ns = 0)+λ (t− s)

=
[
1− e−λ (t−s)]e−λ s +λ (t− s)

= e−λ s− e−λ t +λ (t− s).

5. Let mn be an arbitrary sequence of real numbers, and let σn be an arbitrary sequence of positive
numbers. Let X be a Laplace random variable with parameter λ = 1. Define a sequence of
random variables Yn := σnX +mn. Assume Yn converges in mean of order 2 to some random
variable Y . Determine whether or not Y is a continuous random variable. Justify your answer.

Solution. It is not necessary for Y to be a continuous random variable. To see this, consider
the case mn = m for all n and σn = 1/n. Then Yn = X/n+m, and E[|Yn−m|2] = E[X2]/n2 =
2/n2→ 0. Thus, Yn converges in mean of order 2 to the constant random variable Y ≡m, which
is not a continuous random variable.

A more complete understanding of what is going on is obtained by using the fact that conver-
gence in mean of order 2 implies convergence in distribution. Hence, ϕYn(ν)→ ϕY (ν) for all
ν . Since ϕYn(ν) = e jνmn/(1+σ2

n ν2), we would like to say that ϕY (ν) = e jνm/(1+σ2ν2). The
difficulty is that we first have to show mn and σn both converge to finite limits, which we will
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call m and σ , respectively. A similar difficulty arises if we observe that

FYn(y) = P(Yn ≤ y) = P(σnX +mn ≤ y) = P
(

X ≤ y−mn

σn

)
= FX

(y−mn

σn

)
(∗)

and then want to write FYn(y)→ FX
(
(y−m)/σ

)
.

To show that mn and σn converge, we argue as follows. By Example 13.11, E[Yn]→ E[Y ], and
by Problem 13.22, E[Y 2

n ]→ E[Y 2]. Also, E[Yn]→ E[Y ] implies (E[Yn])
2→ (E[Y ])2. Hence,

lim
n→∞

E[Y 2
n ]− (E[Yn])

2 = lim
n→∞

E[Y 2
n ]− lim

n→∞
(E[Yn])

2

= E[Y 2]− (E[Y ])2.

In this particular problem, E[Yn] = mn and E[Y 2
n ] = 2σ2

n +m2
n. Thus, mn→ E[Y ], and

E[Y 2]− (E[Y ])2 = lim
n→∞

E[Y 2
n ]− (E[Yn])

2 = lim
n→∞

(2σ
2
n +m2

n)−m2
n = lim

n→∞
2σ

2
n .

It follows that σn→
√{

E[Y 2]− (E[Y ])2
}/

2. Now that we know these limits exist, we put

m := lim
n→∞

mn = E[Y ] and σ := lim
n→∞

σn =
√{

E[Y 2]− (E[Y ])2
}/

2.

Now, whether we consider e jνm/(1+σ2ν2) or FX
(
(y−m)/σ

)
, there are two cases to analyze.

First, if σ > 0, then both formulas tell us that Y has density fX
(
(x−m)/σ

)
/σ , which means

that Y is a continuous random variable. On the other hand, if σ = 0, then ϕY (ν) = e jνm is the
characteristic function of the constant random variable Y ≡ m. We reach the same conclusion
using (∗): If σn→ 0, then (∗) tells us that FYn(y)→FX(∞) = 1 if y>m and FYn(y)→FX(−∞) =
0 if y < m, which tells us that Yn ≡ m.


