ECE 730
 Exam 1
 21 October 2013
 5:15-6:45 pm in 3345 EH

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring one sheet of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

1. Your friend is learning about probability and is working with the probability space $(\Omega, \mathscr{A}, \mathrm{P})$, where the sample space is $\Omega:=\{a, b, c, d\}$, the sigma-algebra is $\mathscr{A}:=\{\varnothing,\{a, b\},\{c, d\}, \Omega\}$, and the probability measure is given by $\mathrm{P}(\{a, b\}):=1 / 3$, and $\mathrm{P}(\{c, d\}):=2 / 3$. Determine whether or not it is possible to construct a random variable X on this probability space that satisfies $\mathrm{P}(X=1)=1 / 3, \mathrm{P}(X=2)=1 / 3$, and $\mathrm{P}(X=3)=1 / 3$. Justify your answer.
2. Let $X \sim N(0,1)$ and $N \sim \operatorname{Poisson}(\lambda)$ be independent random variables. Evaluate

$$
\mathrm{E}\left[\int_{0}^{X} t^{N} d t\right] .
$$

For full credit, simplify your answer as much as possible.

3. Let $X_{0}, X_{1}, \ldots, X_{n}$ be random variables applied as input to the moving-average filter with coefficients h_{0}, \ldots, h_{n}. The system output is

$$
Y_{i}:=\sum_{k=0}^{i} h_{k} X_{i-k}, \quad i=0, \ldots, n
$$

Assume Y_{0}, \ldots, Y_{n} are jointly Gaussian. Find conditions on the filter coefficients that force X_{0}, \ldots, X_{n} to be jointly Gaussian. Justify your answer.
4. Let X be a random vector with zero-mean and nonsingular covariance matrix C_{X}. Put $Y:=M X$, where M is a given full-rank $m \times n$ matrix with $m \leq n$. Find the linear MMSE estimator of X based on Y. Express your answer in terms of M, C_{X}, and Y.
5. Let X and Z be independent random variables with $X \sim \exp (\lambda)$ and $\mathrm{P}(Z= \pm 1)=1 / 2$. Find the density of $Y:=Z X$. For full credit, simplify your answer as much as possible.

