ECE 730 Exam 1 21 October 2013 5:15–6:45 pm in 3345 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring one sheet of 8.5 in. \times 11 in. paper on which you have prepared formulas.

1. Your friend is learning about probability and is working with the probability space $(\Omega, \mathscr{A}, \mathsf{P})$, where the sample space is $\Omega := \{a, b, c, d\}$, the sigma-algebra is $\mathscr{A} := \{\mathscr{O}, \{a, b\}, \{c, d\}, \Omega\}$, and the probability measure is given by $\mathsf{P}(\{a, b\}) := 1/3$, and $\mathsf{P}(\{c, d\}) := 2/3$. Determine whether or not it is possible to construct a random variable X on this probability space that satisfies $\mathsf{P}(X = 1) = 1/3$, $\mathsf{P}(X = 2) = 1/3$, and $\mathsf{P}(X = 3) = 1/3$. Justify your answer.

Solution. The answer is "No." To see this, assume otherwise that such a random variable exists. Then \mathscr{A} must contain the three disjoint sets { $\omega \in \Omega : X(\omega) = 1$ }, { $\omega \in \Omega : X(\omega) = 2$ }, and { $\omega \in \Omega : X(\omega) = 3$ }. Since each of these sets must have probability 1/3, these sets must be nonempty and also not equal to Ω . However, \mathscr{A} contains only two such sets.

2. Let $X \sim N(0,1)$ and $N \sim \text{Poisson}(\lambda)$ be independent random variables. Evaluate

$$\mathsf{E}\bigg[\int_0^X t^N dt\bigg].$$

For full credit, simplify your answer as much as possible.

Solution. We can evaluate this expectation using the law of total probability, either by conditioning on X or conditioning on N. For our first solution, we condition on X. To begin, write

$$\mathsf{E}\left[\int_{0}^{X} t^{N} dt\right] = \mathsf{E}\left[\frac{X^{N+1}}{N+1}\right] = \int_{-\infty}^{\infty} \mathsf{E}\left[\frac{X^{N+1}}{N+1}\middle| X = x\right] f_{X}(x) dx = \int_{-\infty}^{\infty} \mathsf{E}\left[\frac{x^{N+1}}{N+1}\middle| X = x\right] f_{X}(x) dx$$
$$= \int_{-\infty}^{\infty} \mathsf{E}\left[\frac{x^{N+1}}{N+1}\right] f_{X}(x) dx,$$

where we have used substitution and independence. Next,

$$\mathsf{E}\left[\frac{x^{N+1}}{N+1}\right] = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \cdot \underbrace{\mathsf{P}(N=n)}_{\text{Poisson pmf}} = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \cdot \frac{\lambda^n e^{-\lambda}}{n!} = \frac{e^{-\lambda}}{\lambda} \sum_{n=0}^{\infty} \frac{(\lambda x)^{n+1}}{(n+1)!} = \frac{e^{-\lambda}}{\lambda} \left[e^{\lambda x} - 1\right].$$

It now follows that

$$\mathsf{E}\left[\int_{0}^{X} t^{N} dt\right] = \int_{-\infty}^{\infty} \frac{e^{-\lambda}}{\lambda} \left[e^{\lambda x} - 1\right] f_{X}(x) dx = \frac{e^{-\lambda}}{\lambda} \left\{\underbrace{\mathsf{E}}\left[e^{\lambda X}\right]_{N(0,1) \text{ mgf}} - 1\right\} = \frac{e^{-\lambda}}{\lambda} \left\{e^{\lambda^{2}/2} - 1\right\}$$

Alternative Solution.

$$\mathsf{E}\left[\int_{0}^{X} t^{N} dt\right] = \mathsf{E}\left[\frac{X^{N+1}}{N+1}\right] = \sum_{n=0}^{\infty} \mathsf{E}\left[\frac{X^{N+1}}{N+1}\middle| N = n\right] \mathsf{P}(N = n) = \sum_{n=0}^{\infty} \mathsf{E}\left[\frac{X^{n+1}}{n+1}\middle| N = n\right] \mathsf{P}(N = n)$$

$$= \sum_{n=0}^{\infty} \mathsf{E}[X^{n+1}] \frac{\mathsf{P}(N = n)}{n+1} = \sum_{k=1}^{\infty} \mathsf{E}[X^{2k}] \frac{\mathsf{P}(N = 2k-1)}{2k} = \sum_{k=1}^{\infty} \frac{(2k)!}{2^{k}k!} \cdot \frac{\mathsf{P}(N = 2k-1)}{2k}$$

$$= \sum_{k=1}^{\infty} \frac{(2k)!}{2^{k}k!} \cdot \frac{1}{2k} \cdot \frac{\lambda^{2k-1}}{(2k-1)!} e^{-\lambda} = \frac{e^{-\lambda}}{\lambda} \sum_{k=1}^{\infty} \frac{(\lambda^{2}/2)^{k}}{k!} = \frac{e^{-\lambda}}{\lambda} \left[e^{\lambda^{2}/2} - 1\right].$$

3. Let X_0, X_1, \ldots, X_n be random variables applied as input to the moving-average filter with coefficients h_0, \ldots, h_n . The system output is

$$Y_i := \sum_{k=0}^{i} h_k X_{i-k}, \quad i = 0, \dots, n.$$

Assume Y_0, \ldots, Y_n are jointly Gaussian. Find conditions on the filter coefficients that force X_0, \ldots, X_n to be jointly Gaussian. Justify your answer.

Solution. Observe that

$$\begin{aligned}
Y_0 &= h_0 X_0 \\
Y_1 &= h_0 X_1 + h_1 X_0 \\
Y_2 &= h_0 X_2 + h_1 X_1 + h_2 X_0 \\
&\vdots \\
Y_n &= h_0 X_n + h_1 X_{n-1} + \dots + h_{n-1} X_1 + h_n X_0,
\end{aligned}$$
(1)

or in matrix form

$$\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} h_0 & 0 & 0 & \cdots & 0 \\ h_1 & h_0 & 0 & \cdots & 0 \\ h_2 & h_1 & h_0 & \cdots & 0 \\ \vdots & & \ddots & \\ h_n & h_{n-1} & \cdots & h_0 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}.$$

Denoting the left-hand side by *Y* and the right-hand side by *HX*, if we can write $X = H^{-1}Y$, then *X* will be Gaussian. Since *H* is lower triangular, its determinant is the product of the diagonal elements; hence, det $H = h_0^{n+1}$, which is nonzero if and only if $h_0 \neq 0$. So, if $h_0 \neq 0$, then X_0, \ldots, X_n must be jointly Gaussian.

Alternative Solution. From the first equation in (1), we have $X_0 = Y_0/h_0$, assuming $h_0 \neq 0$. Using this result in the second equation in (1) yields

$$X_1 = Y_1/h_0 - h_1 X_0/h_0 = Y_1/h_0 - h_1 Y_0/h_0^2$$

which expresses X_1 as a linear combination of Y_0 and Y_1 . Continuing in this way, we can express X_i as a linear combination of Y_0, \ldots, Y_i . Hence, we can explicitly solve for $Y = H^{-1}X$, and it follows that X is Gaussian if $h_0 \neq 0$.

4. Let X be a random vector with zero-mean and nonsingular covariance matrix C_X . Put Y := MX, where M is a given full-rank $m \times n$ matrix with $m \le n$. Find the *linear* MMSE estimator of X based on Y. Express your answer in terms of M, C_X , and Y.

Solution. First note that since X is zero mean, so is Y := MX. Next, $C_Y = MC_XM'$, and $C_{XY} = C_XM'$. We must solve $AC_Y = C_{XY}$ or $A(MC_XM') = C_XM'$. Hence, $A = C_XM'(MC_XM')^{-1}$, and the linear MMSE estimator of X based on Y is $AY = C_XM'(MC_XM')^{-1}Y$.

How did we know that MC_XM' is invertible? Since this is a square matrix, it suffices to show that it is nonsingular; i.e., we must show that $MC_XM'y = 0$ implies y = 0. An easy way to see this is to write $MC_XM' = (C_X^{1/2}M')'(C_X^{1/2}M')$. If $MC_XM'y = 0$, then $0 = y'[MC_XM'y] = ||C_X^{1/2}M'y||^2$. Then since C_X is nonsingular, so is $C_X^{1/2}$, which implies M'y = 0. Since M has full rank and $m \le n$, the rows of M (i.e., the columns of M') are linear independent. Therefore, M'y = 0implies y = 0.

5. Let *X* and *Z* be independent random variables with $X \sim \exp(\lambda)$ and $P(Z = \pm 1) = 1/2$. Find the density of Y := ZX. For full credit, simplify your answer as much as possible.

Solution. Using the law of total probability, substitution, and independence,

$$F_Y(y) = P(Y \le y) = P(ZX \le y) = P(ZX \le y|Z = 1)/2 + P(ZX \le y|Z = -1)/2$$

= $P(X \le y)/2 + P(X \ge -y)/2$
= $F_X(y)/2 + [1 - F_X(-y)]/2$, since X has a continuous cdf.

Differentiating yields

$$f_Y(y) = \frac{1}{2} [f_X(y) - f_X(-y)(-1)] = \frac{1}{2} [f_X(y) + f_X(-y)] = \frac{\lambda}{2} [e^{-\lambda y} u(y) + e^{-\lambda(-y)} u(-y)]$$
$$= \begin{cases} \frac{\lambda}{2} e^{-\lambda y}, & y > 0, \\ \frac{\lambda}{2} e^{\lambda y}, & y < 0, \\ = \frac{\lambda}{2} e^{-\lambda |y|}, & y \neq 0. \end{cases}$$

Thus, $Y \sim \text{Laplace}(\lambda)$.