ECE 730
 Exam 1
 21 October 2013
 5:15-6:45 pm in 3345 EH

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring one sheet of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

1. Your friend is learning about probability and is working with the probability space $(\Omega, \mathscr{A}, \mathrm{P})$, where the sample space is $\Omega:=\{a, b, c, d\}$, the sigma-algebra is $\mathscr{A}:=\{\varnothing,\{a, b\},\{c, d\}, \Omega\}$, and the probability measure is given by $\mathrm{P}(\{a, b\}):=1 / 3$, and $\mathrm{P}(\{c, d\}):=2 / 3$. Determine whether or not it is possible to construct a random variable X on this probability space that satisfies $\mathrm{P}(X=1)=1 / 3, \mathrm{P}(X=2)=1 / 3$, and $\mathrm{P}(X=3)=1 / 3$. Justify your answer.

Solution. The answer is "No." To see this, assume otherwise that such a random variable exists. Then \mathscr{A} must contain the three disjoint sets $\{\omega \in \Omega: X(\omega)=1\},\{\omega \in \Omega: X(\omega)=2\}$, and $\{\omega \in \Omega: X(\omega)=3\}$. Since each of these sets must have probability $1 / 3$, these sets must be nonempty and also not equal to Ω. However, \mathscr{A} contains only two such sets.
2. Let $X \sim N(0,1)$ and $N \sim \operatorname{Poisson}(\lambda)$ be independent random variables. Evaluate

$$
\mathrm{E}\left[\int_{0}^{X} t^{N} d t\right]
$$

For full credit, simplify your answer as much as possible.

Solution. We can evaluate this expectation using the law of total probability, either by conditioning on X or conditioning on N. For our first solution, we condition on X. To begin, write

$$
\begin{aligned}
\mathrm{E}\left[\int_{0}^{X} t^{N} d t\right]=\mathrm{E}\left[\frac{X^{N+1}}{N+1}\right]=\int_{-\infty}^{\infty} \mathrm{E}\left[\left.\frac{X^{N+1}}{N+1} \right\rvert\, X=x\right] f_{X}(x) d x & =\int_{-\infty}^{\infty} \mathrm{E}\left[\left.\frac{x^{N+1}}{N+1} \right\rvert\, X=x\right] f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} \mathrm{E}\left[\frac{x^{N+1}}{N+1}\right] f_{X}(x) d x,
\end{aligned}
$$

where we have used substitution and independence. Next,

$$
\mathrm{E}\left[\frac{x^{N+1}}{N+1}\right]=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \cdot \underbrace{\mathrm{P}(N=n)}_{\text {Poisson pmf }}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \cdot \frac{\lambda^{n} e^{-\lambda}}{n!}=\frac{e^{-\lambda}}{\lambda} \sum_{n=0}^{\infty} \frac{(\lambda x)^{n+1}}{(n+1)!}=\frac{e^{-\lambda}}{\lambda}\left[e^{\lambda x}-1\right] .
$$

It now follows that

$$
\mathrm{E}\left[\int_{0}^{X} t^{N} d t\right]=\int_{-\infty}^{\infty} \frac{e^{-\lambda}}{\lambda}\left[e^{\lambda x}-1\right] f_{X}(x) d x=\frac{e^{-\lambda}}{\lambda}\{\underbrace{\mathrm{E}\left[e^{\lambda X}\right]}_{N(0,1) \mathrm{mgf}}-1\}=\frac{e^{-\lambda}}{\lambda}\left\{e^{\lambda^{2} / 2}-1\right\}
$$

Alternative Solution.

$$
\begin{aligned}
\mathrm{E}\left[\int_{0}^{X} t^{N} d t\right] & =\mathrm{E}\left[\frac{X^{N+1}}{N+1}\right]=\sum_{n=0}^{\infty} \mathrm{E}\left[\left.\frac{X^{N+1}}{N+1} \right\rvert\, N=n\right] \mathrm{P}(N=n)=\sum_{n=0}^{\infty} \mathrm{E}\left[\left.\frac{X^{n+1}}{n+1} \right\rvert\, N=n\right] \mathrm{P}(N=n) \\
& =\sum_{n=0}^{\infty} \mathrm{E}\left[X^{n+1}\right] \frac{\mathrm{P}(N=n)}{n+1}=\sum_{k=1}^{\infty} \mathrm{E}\left[X^{2 k}\right] \frac{\mathrm{P}(N=2 k-1)}{2 k}=\sum_{k=1}^{\infty} \frac{(2 k)!}{2^{k} k!} \cdot \frac{\mathrm{P}(N=2 k-1)}{2 k} \\
& =\sum_{k=1}^{\infty} \frac{(2 k)!}{2^{k} k!} \cdot \frac{1}{2 k} \cdot \frac{\lambda^{2 k-1}}{(2 k-1)!} e^{-\lambda}=\frac{e^{-\lambda}}{\lambda} \sum_{k=1}^{\infty} \frac{\left(\lambda^{2} / 2\right)^{k}}{k!}=\frac{e^{-\lambda}}{\lambda}\left[e^{\lambda^{2} / 2}-1\right] .
\end{aligned}
$$

3. Let $X_{0}, X_{1}, \ldots, X_{n}$ be random variables applied as input to the moving-average filter with coefficients h_{0}, \ldots, h_{n}. The system output is

$$
Y_{i}:=\sum_{k=0}^{i} h_{k} X_{i-k}, \quad i=0, \ldots, n .
$$

Assume Y_{0}, \ldots, Y_{n} are jointly Gaussian. Find conditions on the filter coefficients that force X_{0}, \ldots, X_{n} to be jointly Gaussian. Justify your answer.

Solution. Observe that

$$
\begin{align*}
Y_{0} & =h_{0} X_{0} \\
Y_{1} & =h_{0} X_{1}+h_{1} X_{0} \\
Y_{2} & =h_{0} X_{2}+h_{1} X_{1}+h_{2} X_{0} \tag{1}\\
& \vdots \\
Y_{n} & =h_{0} X_{n}+h_{1} X_{n-1}+\cdots+h_{n-1} X_{1}+h_{n} X_{0},
\end{align*}
$$

or in matrix form

$$
\left[\begin{array}{c}
Y_{0} \\
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
h_{0} & 0 & 0 & \cdots & 0 \\
h_{1} & h_{0} & 0 & \cdots & 0 \\
h_{2} & h_{1} & h_{0} & \cdots & 0 \\
& & & \ddots & \\
h_{n} & h_{n-1} & \cdots & & h_{0}
\end{array}\right]\left[\begin{array}{c}
X_{0} \\
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right] .
$$

Denoting the left-hand side by Y and the right-hand side by $H X$, if we can write $X=H^{-1} Y$, then X will be Gaussian. Since H is lower triangular, its determinant is the product of the diagonal elements; hence, $\operatorname{det} H=h_{0}^{n+1}$, which is nonzero if and only if $h_{0} \neq 0$. So, if $h_{0} \neq 0$, then X_{0}, \ldots, X_{n} must be jointly Gaussian.

Alternative Solution. From the first equation in (1), we have $X_{0}=Y_{0} / h_{0}$, assuming $h_{0} \neq 0$. Using this result in the second equation in (1) yields

$$
X_{1}=Y_{1} / h_{0}-h_{1} X_{0} / h_{0}=Y_{1} / h_{0}-h_{1} Y_{0} / h_{0}^{2}
$$

which expresses X_{1} as a linear combination of Y_{0} and Y_{1}. Continuing in this way, we can express X_{i} as a linear combination of Y_{0}, \ldots, Y_{i}. Hence, we can explicitly solve for $Y=H^{-1} X$, and it follows that X is Gaussian if $h_{0} \neq 0$.
4. Let X be a random vector with zero-mean and nonsingular covariance matrix C_{X}. Put $Y:=M X$, where M is a given full-rank $m \times n$ matrix with $m \leq n$. Find the linear MMSE estimator of X based on Y. Express your answer in terms of M, C_{X}, and Y.

Solution. First note that since X is zero mean, so is $Y:=M X$. Next, $C_{Y}=M C_{X} M^{\prime}$, and $C_{X Y}=$ $C_{X} M^{\prime}$. We must solve $A C_{Y}=C_{X Y}$ or $A\left(M C_{X} M^{\prime}\right)=C_{X} M^{\prime}$. Hence, $A=C_{X} M^{\prime}\left(M C_{X} M^{\prime}\right)^{-1}$, and the linear MMSE estimator of X based on Y is $A Y=C_{X} M^{\prime}\left(M C_{X} M^{\prime}\right)^{-1} Y$.
How did we know that $M C_{X} M^{\prime}$ is invertible? Since this is a square matrix, it suffices to show that it is nonsingular; i.e., we must show that $M C_{X} M^{\prime} y=0$ implies $y=0$. An easy way to see this is to write $M C_{X} M^{\prime}=\left(C_{X}^{1 / 2} M^{\prime}\right)^{\prime}\left(C_{X}^{1 / 2} M^{\prime}\right)$. If $M C_{X} M^{\prime} y=0$, then $0=y^{\prime}\left[M C_{X} M^{\prime} y\right]=\left\|C_{X}^{1 / 2} M^{\prime} y\right\|^{2}$. Then since C_{X} is nonsingular, so is $C_{X}^{1 / 2}$, which implies $M^{\prime} y=0$. Since M has full rank and $m \leq n$, the rows of M (i.e., the columns of M^{\prime}) are linear independent. Therefore, $M^{\prime} y=0$ implies $y=0$.
5. Let X and Z be independent random variables with $X \sim \exp (\lambda)$ and $P(Z= \pm 1)=1 / 2$. Find the density of $Y:=Z X$. For full credit, simplify your answer as much as possible.

Solution. Using the law of total probability, substitution, and independence,

$$
\begin{aligned}
F_{Y}(y) & =\mathrm{P}(Y \leq y)=\mathrm{P}(Z X \leq y)=\mathrm{P}(Z X \leq y \mid Z=1) / 2+\mathrm{P}(Z X \leq y \mid Z=-1) / 2 \\
& =\mathrm{P}(X \leq y) / 2+\mathrm{P}(X \geq-y) / 2 \\
& =F_{X}(y) / 2+\left[1-F_{X}(-y)\right] / 2, \quad \text { since } X \text { has a continuous cdf. }
\end{aligned}
$$

Differentiating yields

$$
\begin{aligned}
f_{Y}(y)=\frac{1}{2}\left[f_{X}(y)-f_{X}(-y)(-1)\right]=\frac{1}{2}\left[f_{X}(y)+f_{X}(-y)\right] & =\frac{\lambda}{2}\left[e^{-\lambda y} u(y)+e^{-\lambda(-y)} u(-y)\right] \\
& = \begin{cases}\frac{\lambda}{2} e^{-\lambda y}, & y>0, \\
\frac{\lambda}{2} e^{\lambda y}, \quad y<0,\end{cases} \\
& =\frac{\lambda}{2} e^{-\lambda|y|}, \quad y \neq 0 .
\end{aligned}
$$

Thus, $Y \sim$ Laplace (λ).

