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1. Your friend is learning about probability and is working with the probability space (Ω,A ,P),
where the sample space is Ω := {a,b,c,d}, the sigma-algebra is A :=

{
∅,{a,b},{c,d},Ω

}
,

and the probability measure is given by P({a,b}) := 1/3, and P({c,d}) := 2/3. Determine
whether or not it is possible to construct a random variable X on this probability space that
satisfies P(X = 1) = 1/3, P(X = 2) = 1/3, and P(X = 3) = 1/3. Justify your answer.

Solution. The answer is “No.” To see this, assume otherwise that such a random variable exists.
Then A must contain the three disjoint sets {ω ∈ Ω : X(ω) = 1}, {ω ∈ Ω : X(ω) = 2}, and
{ω ∈ Ω : X(ω) = 3}. Since each of these sets must have probability 1/3, these sets must be
nonempty and also not equal to Ω. However, A contains only two such sets.

2. Let X ∼ N(0,1) and N ∼ Poisson(λ ) be independent random variables. Evaluate

E

[∫ X

0
tN dt

]
.

For full credit, simplify your answer as much as possible.

Solution. We can evaluate this expectation using the law of total probability, either by condi-
tioning on X or conditioning on N. For our first solution, we condition on X . To begin, write

E

[∫ X

0
tN dt

]
= E

[
XN+1

N +1

]
=
∫

∞

−∞

E

[
XN+1

N +1

∣∣∣∣X = x
]

fX(x)dx =
∫

∞

−∞

E

[
xN+1

N +1

∣∣∣∣X = x
]

fX(x)dx

=
∫

∞

−∞

E

[
xN+1

N +1

]
fX(x)dx,

where we have used substitution and independence. Next,

E

[
xN+1

N +1

]
=

∞

∑
n=0

xn+1

n+1
·P(N = n)︸ ︷︷ ︸

Poisson pmf

=
∞

∑
n=0

xn+1

n+1
· λ

ne−λ

n!
=

e−λ

λ

∞

∑
n=0

(λx)n+1

(n+1)!
=

e−λ

λ

[
eλx−1

]
.

It now follows that

E

[∫ X

0
tN dt

]
=
∫

∞

−∞

e−λ

λ

[
eλx−1

]
fX(x)dx =

e−λ

λ

{
E[eλX ]︸ ︷︷ ︸

N(0,1) mgf

−1
}
=

e−λ

λ

{
eλ 2/2−1

}
.

Alternative Solution.

E

[∫ X

0
tN dt

]
= E

[
XN+1

N +1

]
=

∞

∑
n=0

E

[
XN+1

N +1

∣∣∣∣N = n
]
P(N = n) =

∞

∑
n=0

E

[
Xn+1

n+1

∣∣∣∣N = n
]
P(N = n)

=
∞

∑
n=0

E[Xn+1]
P(N = n)

n+1
=

∞

∑
k=1

E[X2k]
P(N = 2k−1)

2k
=

∞

∑
k=1

(2k)!
2kk!

· P(N = 2k−1)
2k

=
∞

∑
k=1

(2k)!
2kk!

· 1
2k
· λ 2k−1

(2k−1)!
e−λ =

e−λ

λ

∞

∑
k=1

(λ 2/2)k

k!
=

e−λ

λ

[
eλ 2/2−1

]
.
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3. Let X0,X1, . . . ,Xn be random variables applied as input to the moving-average filter with coeffi-
cients h0, . . . ,hn. The system output is

Yi :=
i

∑
k=0

hkXi−k, i = 0, . . . ,n.

Assume Y0, . . . ,Yn are jointly Gaussian. Find conditions on the filter coefficients that force
X0, . . . ,Xn to be jointly Gaussian. Justify your answer.

Solution. Observe that

Y0 = h0X0

Y1 = h0X1 +h1X0

Y2 = h0X2 +h1X1 +h2X0 (1)
...

Yn = h0Xn +h1Xn−1 + · · ·+hn−1X1 +hnX0,

or in matrix form 
Y0
Y1
Y2
...

Yn

=


h0 0 0 · · · 0
h1 h0 0 · · · 0
h2 h1 h0 · · · 0

. . .
hn hn−1 · · · h0




X0
X1
X2
...

Xn

 .
Denoting the left-hand side by Y and the right-hand side by HX , if we can write X = H−1Y , then
X will be Gaussian. Since H is lower triangular, its determinant is the product of the diagonal
elements; hence, detH = hn+1

0 , which is nonzero if and only if h0 6= 0. So, if h0 6= 0, then
X0, . . . ,Xn must be jointly Gaussian.

Alternative Solution. From the first equation in (1), we have X0 = Y0/h0, assuming h0 6= 0.
Using this result in the second equation in (1) yields

X1 = Y1/h0−h1X0/h0 = Y1/h0−h1Y0/h2
0,

which expresses X1 as a linear combination of Y0 and Y1. Continuing in this way, we can express
Xi as a linear combination of Y0, . . . ,Yi. Hence, we can explicitly solve for Y = H−1X , and it
follows that X is Gaussian if h0 6= 0.
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4. Let X be a random vector with zero-mean and nonsingular covariance matrix CX . Put Y := MX ,
where M is a given full-rank m× n matrix with m ≤ n. Find the linear MMSE estimator of X
based on Y . Express your answer in terms of M, CX , and Y .

Solution. First note that since X is zero mean, so is Y := MX . Next, CY = MCX M′, and CXY =
CX M′. We must solve ACY = CXY or A(MCX M′) = CX M′. Hence, A = CX M′(MCX M′)−1, and
the linear MMSE estimator of X based on Y is AY =CX M′(MCX M′)−1Y .

How did we know that MCX M′ is invertible? Since this is a square matrix, it suffices to show that
it is nonsingular; i.e., we must show that MCX M′y = 0 implies y = 0. An easy way to see this
is to write MCX M′ = (C1/2

X M′)′(C1/2
X M′). If MCX M′y = 0, then 0 = y′[MCX M′y] = ‖C1/2

X M′y‖2.
Then since CX is nonsingular, so is C1/2

X , which implies M′y = 0. Since M has full rank and
m ≤ n, the rows of M (i.e., the columns of M′) are linear independent. Therefore, M′y = 0
implies y = 0.

5. Let X and Z be independent random variables with X ∼ exp(λ ) and P(Z =±1) = 1/2. Find the
density of Y := ZX . For full credit, simplify your answer as much as possible.

Solution. Using the law of total probability, substitution, and independence,

FY (y) = P(Y ≤ y) = P(ZX ≤ y) = P(ZX ≤ y|Z = 1)/2+P(ZX ≤ y|Z =−1)/2
= P(X ≤ y)/2+P(X ≥−y)/2
= FX(y)/2+[1−FX(−y)]/2, since X has a continuous cdf.

Differentiating yields

fY (y) = 1
2 [ fX(y)− fX(−y)(−1)] = 1

2 [ fX(y)+ fX(−y)] = λ

2 [e
−λyu(y)+ e−λ (−y)u(−y)]

=

{
λ

2 e−λy, y > 0,
λ

2 eλy, y < 0,

=
λ

2
e−λ |y|, y 6= 0.

Thus, Y ∼ Laplace(λ ).


