ECE 730

Final Exam
18 December 2013
5:05-7:05 pm in 2535 EH

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring two sheets of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

Some trigonometric identities:

$$
\begin{aligned}
e^{j \theta}+e^{-j \theta} & =2 \cos \theta & & \\
e^{j \theta}-e^{-j \theta} & =2 j \sin \theta & & \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B & & \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A & & \\
& =1-2 \sin ^{2} A & & \Rightarrow(1-\cos 2 A)=2 \sin ^{2} A \\
& =2 \cos ^{2} A-1 & & \\
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B & & \\
\sin 2 A & =2 \sin A \cos A & &
\end{aligned}
$$

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05-7:05 pm in 2535 EH Page 1

1. Let X_{t} be white noise with power spectral density $S_{X}(f)=N_{0} / 2$. Suppose that X_{t} is applied to an LTI zero-order-hold system with impulse response $h(t)=I_{[0, T]}(t)$, where $T>0$ is a given hold duration. Denote the system output by Y_{t}. Express $\int_{-\infty}^{\infty} R_{Y}(\tau) d \tau$ in closed form.
2. Let $\left\{W_{t}, t \geq 0\right\}$ be a standard Wiener process, and let $g \in L^{2}[0, \infty)$ be given. Define a new random process by

$$
X_{t}:=\int_{0}^{t} g(\tau) d W_{\tau}, \quad t \geq 0 .
$$

For $0 \leq s<t$, find the conditional characteristic function of X_{t} given X_{s}, i.e., $\mathrm{E}\left[e^{j v X_{t}} \mid X_{s}\right]$.
Justify your answer.
3. Let Y_{1}, Y_{2}, \ldots be i.i.d. with common density f, and let g be another density. For simplicity, assume both densities are strictly positive, and assume that the divergence

$$
\mathscr{D}(f \| g):=\int_{-\infty}^{\infty} f(y) \log \frac{f(y)}{g(y)} d y
$$

is finite. Put

$$
w(y):=\frac{f(y)}{g(y)}
$$

and

$$
X_{n}:=\prod_{k=1}^{n} w\left(Y_{k}\right) .
$$

Determine whether or not $X_{n}^{1 / n}$ converges almost surely. If it does, explain why and identify the limit; if not, give a counterexample.
4. Suppose X_{n} converges in distribution to X, and Y_{n} converges in distribution to Y. Does $X_{n}+Y_{n}$ converge in distribution to $X+Y$? Prove it is true or give a counterexample.
5. Consider a sequence of random variables X_{n} such that $\mathrm{E}\left[X_{n}\right] \rightarrow 0$. If $X_{n} \geq 0$, then writing $\mathrm{E}\left[\left|X_{n}-0\right|\right]=\mathrm{E}\left[\left|X_{n}\right|\right]=\mathrm{E}\left[X_{n}\right] \rightarrow 0$ shows that X_{n} converges in mean of order one to zero. What if we do not have $X_{n} \geq 0$? Give an example of a sequence having all of the following properties:

- $\mathrm{E}\left[X_{n}\right]>0$,
- $\mathrm{E}\left[X_{n}\right] \rightarrow 0$,
- X_{n} does not converge in mean of order one to zero.

