ECE 730 Final Exam 18 December 2013 5:05–7:05 pm in 2535 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring two sheets of 8.5 in. \times 11 in. paper on which you have prepared formulas.

Some trigonometric identities:

 $e^{j\theta} + e^{-j\theta} = 2\cos\theta$ $e^{j\theta} - e^{-j\theta} = 2j\sin\theta$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\cos 2A = \cos^2 A - \sin^2 A$ $= 1 - 2\sin^2 A \qquad \Rightarrow (1 - \cos 2A) = 2\sin^2 A$ $= 2\cos^2 A - 1 \qquad \Rightarrow (1 + \cos 2A) = 2\cos^2 A$ $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\sin 2A = 2\sin A \cos A$

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05–7:05 pm in 2535 EH Page 1

- 1. Let X_t be white noise with power spectral density $S_X(f) = N_0/2$. Suppose that X_t is applied to an LTI zero-order-hold system with impulse response $h(t) = I_{[0,T]}(t)$, where T > 0 is a given hold duration. Denote the system output by Y_t . Express $\int_{-\infty}^{\infty} R_Y(\tau) d\tau$ in closed form.
- 2. Let $\{W_t, t \ge 0\}$ be a standard Wiener process, and let $g \in L^2[0,\infty)$ be given. Define a new random process by

$$X_t := \int_0^t g(\tau) dW_{\tau}, \quad t \ge 0.$$

For $0 \le s < t$, find the conditional characteristic function of X_t given X_s , i.e., $\mathsf{E}[e^{jvX_t}|X_s]$. Justify your answer.

3. Let Y_1, Y_2, \ldots be i.i.d. with common density f, and let g be another density. For simplicity, assume both densities are strictly positive, and assume that the divergence

$$\mathscr{D}(f||g) := \int_{-\infty}^{\infty} f(y) \log \frac{f(y)}{g(y)} dy$$

is finite. Put

$$w(y) := \frac{f(y)}{g(y)}$$

and

$$X_n := \prod_{k=1}^n w(Y_k).$$

Determine whether or not $X_n^{1/n}$ converges almost surely. If it does, explain why and identify the limit; if not, give a counterexample.

- 4. Suppose X_n converges in distribution to X, and Y_n converges in distribution to Y. Does $X_n + Y_n$ converge in distribution to X + Y? **Prove it is true or give a counterexample.**
- 5. Consider a sequence of random variables X_n such that $E[X_n] \to 0$. If $X_n \ge 0$, then writing $E[|X_n 0|] = E[|X_n|] = E[X_n] \to 0$ shows that X_n converges in mean of order one to zero. What if we do *not* have $X_n \ge 0$? Give an example of a sequence having *all* of the following properties:
 - $E[X_n] > 0$,
 - $\mathsf{E}[X_n] \to 0$,
 - X_n does *not* converge in mean of order one to zero.