ECE 730 Final Exam 18 December 2013 5:05–7:05 pm in 2535 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring two sheets of 8.5 in. \times 11 in. paper on which you have prepared formulas.

Some trigonometric identities:

 $e^{j\theta} + e^{-j\theta} = 2\cos\theta$ $e^{j\theta} - e^{-j\theta} = 2j\sin\theta$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$ $\cos 2A = \cos^2 A - \sin^2 A$ $= 1 - 2\sin^2 A \qquad \Rightarrow (1 - \cos 2A) = 2\sin^2 A$ $= 2\cos^2 A - 1 \qquad \Rightarrow (1 + \cos 2A) = 2\cos^2 A$ $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\sin 2A = 2\sin A \cos A$

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05–7:05 pm in 2535 EH Page 1

1. Let X_t be white noise with power spectral density $S_X(f) = N_0/2$. Suppose that X_t is applied to an LTI zero-order-hold system with impulse response $h(t) = I_{[0,T]}(t)$, where T > 0 is a given hold duration. Denote the system output by Y_t . Express $\int_{-\infty}^{\infty} R_Y(\tau) d\tau$ in closed form.

Solution. Since $S_Y(f) = \int_{-\infty}^{\infty} R_Y(\tau) e^{-j2\pi f \tau} d\tau$, we see that $S_Y(0)$ is the desired integral. Since $S_Y(f) = |H(f)|^2 S_X(f)$, and since $S_X(0) = N_0/2$, all we have to find is $H(0) = \int_0^T 1 dt = T$. Thus, $\int_{-\infty}^{\infty} R_Y(\tau) dt = |H(0)|^2 S_X(0) = T^2 N_0/2$.

Alternative Solution 1. A slightly longer solution requires finding $S_Y(f) = |H(f)|^2 S_X(f)$ for all f, not just f = 0. The easiest way to find |H(f)| is to realize that it is equal to the absolute value of the Fourier transform of $h(t + T/2) = I_{[-T/2,T/2]}(t)$. From the table,

$$|H(f)| = T \left| \frac{\sin(\pi T f)}{\pi T f} \right| = T |\operatorname{sinc}(T f)|.$$

Alternatively, by direct calculation,

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft} dt = \int_{0}^{T} e^{-j2\pi ft} dt = \frac{e^{-j2\pi ft}}{-j2\pi f} \Big|_{0}^{T} = \frac{1 - e^{-j2\pi fT}}{j2\pi f}$$

At this point, we can write

$$\frac{1 - e^{-j2\pi fT}}{j2\pi f} = e^{-j\pi fT} \frac{e^{j\pi fT} - e^{-j\pi fT}}{j2\pi f} = e^{-j\pi fT} T \frac{e^{j\pi fT} - e^{-j\pi fT}}{2j(\pi fT)} = e^{-j\pi fT} T \frac{\sin(\pi fT)}{\pi fT}$$

or, since we only need $|H(f)|^2$,

$$|H(f)|^{2} = H(f)H(f)^{*} = \frac{1 - e^{-j2\pi fT}}{j2\pi f} \cdot \frac{1 - e^{j2\pi fT}}{-j2\pi f} = \frac{2[1 - \cos(2\pi fT)]}{(2\pi f)^{2}} = \frac{4\sin^{2}(\pi fT)}{(2\pi f)^{2}},$$

which is equal to $T^2 \operatorname{sinc}^2(Tf)$. In any case, $S_Y(f) = T^2 \operatorname{sinc}^2(Tf)N_0/2$. Taking f = 0 again yields $T^2N_0/2$.

Alternative Solution 2. Using (10.17), write

$$\int_{-\infty}^{\infty} R_{Y}(\tau) d\tau = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(\beta) \left(\int_{-\infty}^{\infty} h(\theta) R_{X}(\tau - \beta + \theta) d\theta \right) d\beta \right] d\tau$$

= $(N_{0}/2) \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(\beta) \left(\int_{-\infty}^{\infty} h(\theta) \delta(\tau - \beta + \theta) d\theta \right) d\beta \right] d\tau$
= $(N_{0}/2) \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(\beta) h(\beta - \tau) d\beta \right] d\tau$
= $(N_{0}/2) \int_{-\infty}^{\infty} h(\beta) \left[\int_{-\infty}^{\infty} h(\beta - \tau) d\tau \right] d\beta$
= $(N_{0}/2) \int_{-\infty}^{\infty} h(\beta) \left[\int_{-\infty}^{\infty} h(s) ds \right] d\beta = (N_{0}/2)T^{2}$, from the def. of h .

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05–7:05 pm in 2535 EH Page 2

2. Let $\{W_t, t \ge 0\}$ be a standard Wiener process, and let $g \in L^2[0,\infty)$ be given. Define a new random process by

$$X_t := \int_0^t g(\tau) \, dW_\tau, \quad t \ge 0.$$

For $0 \le s < t$, find the conditional characteristic function of X_t given X_s , i.e., $\mathsf{E}[e^{jvX_t}|X_s]$. Justify your answer.

Solution. We begin by writing

$$\mathsf{E}[e^{j\nu X_t}|X_s] = \mathsf{E}[e^{j\nu (X_t - X_s + X_s)}|X_s] = \mathsf{E}[e^{j\nu (X_t - X_s)}e^{j\nu X_s}|X_s] = \mathsf{E}[e^{j\nu (X_t - X_s)}|X_s]e^{j\nu X_s}.$$

Hence, it suffices to compute

$$\mathsf{E}[e^{j\nu(X_t-X_s)}|X_s] = \mathsf{E}[e^{j\nu(X_t-X_s)}|X_s-X_0], \text{ since } X_0 \equiv 0.$$

Next observe that

$$\mathsf{E}[(X_t - X_s)(X_s - X_0)] = \mathsf{E}\left[\left(\int_s^t g(\tau) \, dW_\tau\right) \left(\int_0^s g(\tau) \, dW_\tau\right)\right] = \int_0^\infty g(\tau)^2 I_{[s,t]}(\tau) I_{[0,s]}(\tau) \, d\tau = 0.$$

Thus, $X_t - X_s$ and $X_s - X_0$ are uncorrelated. Since $\{X_t\}$ is Gaussian by HW Problem 14.17, the increments $X_t - X_s$ and $X_s - X_0$ are independent. Therefore,

$$\mathsf{E}[e^{j\mathbf{v}(X_t-X_s)}|X_s-X_0]=\mathsf{E}[e^{j\mathbf{v}(X_t-X_s)}]$$

Since $X_t - X_s$ is Gaussian, we just need to find its mean and variance. Since Wiener integrals have zero mean, $E[X_t - X_s] = 0$. Also,

$$\mathsf{E}[(X_t - X_s)^2] = \mathsf{E}\left[\left(\int_s^t g(\tau) dW_{\tau}\right)^2\right] = \int_s^t g(\tau)^2 d\tau.$$

Thus, $X_t - X_s \sim N(0, \int_s^t g(\tau)^2 d\tau)$, and

$$\mathsf{E}[e^{j\nu X_t}|X_s] = \exp\left[j\nu X_s - \frac{\nu^2}{2}\int_s^t g(\tau)^2 d\tau\right]. \tag{*}$$

Alternative Solution. The key fact we need is that $\{X_t\}$ is a Gaussian process by HW Problem 14.17. Hence, the conditional distribution of X_t given X_s is completely determined by $E[X_t|X_s]$ and the error covariance $C_{X_t|X_s} := C_{X_t} - AC_{X_sX_t}$, where A solves $AC_{X_s} = C_{X_tX_s}$. Since Wiener integrals have zero mean,

$$C_{X_t} = \mathsf{E}[X_t^2] = \mathsf{E}\left[\left(\int_0^t g(\tau) dW_{\tau}\right)^2\right] = \int_0^t g(\tau)^2 d\tau, \quad C_{X_s} = \mathsf{E}[X_s^2] = \int_0^s g(\tau)^2 d\tau,$$

and since we have a scalar process,

$$C_{X_s X_t} = C_{X_t X_s} = \mathsf{E}[X_t X_s] = \mathsf{E}\left[\left(\int_0^t g(\tau) \, dW_\tau\right) \left(\int_0^s g(\tau) \, dW_\tau\right)\right] = \int_0^s g(\tau)^2 \, d\tau, \quad \text{since } s < t.$$

It now follows that A = 1, $\mathsf{E}[X_t|X_s] = X_s$, and $C_{X_t|X_s} = \int_s^t g(\tau)^2 d\tau$. In other words, $X_t|X_s \sim N(X_s, C_{X_t|X_s})$ and so (*) holds.

3. Let Y_1, Y_2, \ldots be i.i.d. with common density f, and let g be another density. For simplicity, assume both densities are strictly positive, and assume that the divergence

$$\mathscr{D}(f||g) := \int_{-\infty}^{\infty} f(y) \log \frac{f(y)}{g(y)} dy$$

is finite. Put

$$w(y) := \frac{f(y)}{g(y)}$$

and

$$X_n := \prod_{k=1}^n w(Y_k).$$

Determine whether or not $X_n^{1/n}$ converges almost surely. If it does, explain why and identify the limit; if not, give a counterexample.

Solution. Consider the sequence

$$Z_n := \log X_n^{1/n} = \frac{1}{n} \log X_n = \frac{1}{n} \sum_{k=1}^n \log w(Y_k).$$

Since the Y_k have density f,

$$\mathsf{E}[\log w(Y_k)] = \int_{-\infty}^{\infty} f(y) \log w(y) \, dy = \int_{-\infty}^{\infty} f(y) \log \frac{f(y)}{g(y)} \, dy = \mathscr{D}(f || g),$$

which is assumed finite. By the strong law of large numbers, $Z_n \xrightarrow{\text{a.s.}} \mathscr{D}(f || g)$. Hence, $X_n^{1/n} = \exp(Z_n) \xrightarrow{\text{a.s.}} \exp[\mathscr{D}(f || g)]$.

4. Suppose X_n converges in distribution to X, and Y_n converges in distribution to Y. Does $X_n + Y_n$ converge in distribution to X + Y? **Prove it is true or give a counterexample.** *Discussion.* Here are two ways to see how we might construct a counterexample. First suppose X_n and Y_n are independent. Then

$$\mathsf{E}[e^{jv(X_n+Y_n)}] = \mathsf{E}[e^{jvX_n}]\mathsf{E}[e^{jvY_n}] \to \mathsf{E}[e^{jvX}]\mathsf{E}[e^{jvY}].$$

However, there is no requirement that X and Y be independent. Hence, if we can find X and Y with the correct marginal distributions, but with X and Y dependent, we will have a counterexample. A second approach is to make X_n and Y_n dependent, but X and Y independent.

Solution 1. Consider the case in which X_n , Y_n , and X are all N(0,1) with X_n and Y_n being independent for each n. Put Y := -X so that Y is also N(0,1). Then $F_{X_n}(x) = F_X(x)$ for all n and $F_{Y_n}(y) = F_Y(y)$ for all n. However, $X_n + Y_n \sim N(0,2)$, while X + Y = 0.

Solution 2. Let X_n , X, and Y be uniform [0, 1], with X and Y being independent. Put $Y_n := 1 - X_n$ so that Y_n is also uniform [0, 1]. Then $X_n + Y_n = 1$, but X + Y has a triangular density on [0, 2].

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05–7:05 pm in 2535 EH Page 4

- 5. Consider a sequence of random variables X_n such that $E[X_n] \to 0$. If $X_n \ge 0$, then writing $E[|X_n 0|] = E[|X_n|] = E[X_n] \to 0$ shows that X_n converges in mean of order one to zero. What if we do *not* have $X_n \ge 0$? Give an example of a sequence having *all* of the following properties:
 - $\mathsf{E}[X_n] > 0$,
 - $\mathsf{E}[X_n] \to 0$,
 - X_n does *not* converge in mean of order one to zero.

Solution. Let X be any random variable satisfying the conditions $0 < E[|X|] < \infty$ and E[X] = 0. Let m_n be any sequence of positive numbers converging to zero. Put $X_n := m_n + X$. Then $E[X_n] = m_n$, which is positive and converges to zero. Furthermore,

$$\mathsf{E}[|X_n - X|] = m_n \to 0$$

shows that X_n converges in mean of order one to X. But the condition E[|X|] > 0 means that X is *not* the zero random variable. Hence, X_n does not converge in mean of order one to zero. For a specific example, use $X \sim N(0, 1)$ and $m_n = 1/n$. Here it is obvious that X is not the zero random variable.

Alternative Solution. Suppose you did not start with a random variable X as above, but instead started with random variables Y_n with densities $f(y - m_n)$, where again m_n is a sequence of positive numbers converging to zero, and f is a density with zero mean. In this case, let X also have density f, and put $X_n := m_n + X$ so that the density of X_n is the same as the density of Y_n . Then by the argument above, $E[|X_n|] \not\rightarrow 0$, and since Y_n and X_n have the same density,

$$\mathsf{E}[|Y_n|] = \mathsf{E}[|X_n|] \not\to 0.$$

Alternative Solution. Suppose $P(X_n = 1 + 1/n) = 1/2$ and $P(X_n = -1) = 1/2$. Then $E[X_n] = 1/(2n)$, which is positive and converges to zero, while $E[|X_n|] = 1 + 1/(2n) \rightarrow 1 \neq 0$.