ECE 730

Final Exam
18 December 2013
5:05-7:05 pm in 2535 EH

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring two sheets of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

Some trigonometric identities:

$$
\begin{aligned}
e^{j \theta}+e^{-j \theta} & =2 \cos \theta & & \\
e^{j \theta}-e^{-j \theta} & =2 j \sin \theta & & \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B & & \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A & & \\
& =1-2 \sin ^{2} A & & \Rightarrow(1-\cos 2 A)=2 \sin ^{2} A \\
& =2 \cos ^{2} A-1 & & \\
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B & & \\
\sin 2 A & =2 \sin A \cos A & &
\end{aligned}
$$

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05-7:05 pm in 2535 EH
Page 1

1. Let X_{t} be white noise with power spectral density $S_{X}(f)=N_{0} / 2$. Suppose that X_{t} is applied to an LTI zero-order-hold system with impulse response $h(t)=I_{[0, T]}(t)$, where $T>0$ is a given hold duration. Denote the system output by Y_{t}. Express $\int_{-\infty}^{\infty} R_{Y}(\tau) d \tau$ in closed form.
Solution. Since $S_{Y}(f)=\int_{-\infty}^{\infty} R_{Y}(\tau) e^{-j 2 \pi f \tau} d \tau$, we see that $S_{Y}(0)$ is the desired integral. Since $S_{Y}(f)=|H(f)|^{2} S_{X}(f)$, and since $S_{X}(0)=N_{0} / 2$, all we have to find is $H(0)=\int_{0}^{T} 1 d t=T$. Thus, $\int_{-\infty}^{\infty} R_{Y}(\tau) d t=|H(0)|^{2} S_{X}(0)=T^{2} N_{0} / 2$.
Alternative Solution 1. A slightly longer solution requires finding $S_{Y}(f)=|H(f)|^{2} S_{X}(f)$ for all f, not just $f=0$. The easiest way to find $|H(f)|$ is to realize that it is equal to the absolute value of the Fourier transform of $h(t+T / 2)=I_{[-T / 2, T / 2]}(t)$. From the table,

$$
|H(f)|=T\left|\frac{\sin (\pi T f)}{\pi T f}\right|=T|\operatorname{sinc}(T f)| .
$$

Alternatively, by direct calculation,

$$
H(f)=\int_{-\infty}^{\infty} h(t) e^{-j 2 \pi f t} d t=\int_{0}^{T} e^{-j 2 \pi f t} d t=\left.\frac{e^{-j 2 \pi f t}}{-j 2 \pi f}\right|_{0} ^{T}=\frac{1-e^{-j 2 \pi f T}}{j 2 \pi f}
$$

At this point, we can write

$$
\frac{1-e^{-j 2 \pi f T}}{j 2 \pi f}=e^{-j \pi f T} \frac{e^{j \pi f T}-e^{-j \pi f T}}{j 2 \pi f}=e^{-j \pi f T} T \frac{e^{j \pi f T}-e^{-j \pi f T}}{2 j(\pi f T)}=e^{-j \pi f T} T \frac{\sin (\pi f T)}{\pi f T},
$$

or, since we only need $|H(f)|^{2}$,

$$
|H(f)|^{2}=H(f) H(f)^{*}=\frac{1-e^{-j 2 \pi f T}}{j 2 \pi f} \cdot \frac{1-e^{j 2 \pi f T}}{-j 2 \pi f}=\frac{2[1-\cos (2 \pi f T)]}{(2 \pi f)^{2}}=\frac{4 \sin ^{2}(\pi f T)}{(2 \pi f)^{2}},
$$

which is equal to $T^{2} \operatorname{sinc}^{2}(T f)$. In any case, $S_{Y}(f)=T^{2} \operatorname{sinc}^{2}(T f) N_{0} / 2$. Taking $f=0$ again yields $T^{2} N_{0} / 2$.
Alternative Solution 2. Using (10.17), write

$$
\begin{aligned}
\int_{-\infty}^{\infty} R_{Y}(\tau) d \tau & =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} h(\beta)\left(\int_{-\infty}^{\infty} h(\theta) R_{X}(\tau-\beta+\theta) d \theta\right) d \beta\right] d \tau \\
& =\left(N_{0} / 2\right) \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} h(\beta)\left(\int_{-\infty}^{\infty} h(\theta) \delta(\tau-\beta+\theta) d \theta\right) d \beta\right] d \tau \\
& =\left(N_{0} / 2\right) \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} h(\beta) h(\beta-\tau) d \beta\right] d \tau \\
& =\left(N_{0} / 2\right) \int_{-\infty}^{\infty} h(\beta)\left[\int_{-\infty}^{\infty} h(\beta-\tau) d \tau\right] d \beta \\
& =\left(N_{0} / 2\right) \int_{-\infty}^{\infty} h(\beta)\left[\int_{-\infty}^{\infty} h(s) d s\right] d \beta=\left(N_{0} / 2\right) T^{2}, \quad \text { from the def. of } h .
\end{aligned}
$$

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05-7:05 pm in 2535 EH
Page 2
2. Let $\left\{W_{t}, t \geq 0\right\}$ be a standard Wiener process, and let $g \in L^{2}[0, \infty)$ be given. Define a new random process by

$$
X_{t}:=\int_{0}^{t} g(\tau) d W_{\tau}, \quad t \geq 0
$$

For $0 \leq s<t$, find the conditional characteristic function of X_{t} given X_{s}, i.e., $\mathrm{E}\left[e^{j v X_{t}} \mid X_{s}\right]$.
Justify your answer.
Solution. We begin by writing

$$
\mathrm{E}\left[e^{j v X_{t}} \mid X_{s}\right]=\mathrm{E}\left[e^{j v\left(X_{t}-X_{s}+X_{s}\right)} \mid X_{s}\right]=\mathrm{E}\left[e^{j v\left(X_{t}-X_{s}\right)} e^{j v X_{s}} \mid X_{s}\right]=\mathrm{E}\left[e^{j v\left(X_{t}-X_{s}\right)} \mid X_{s}\right] e^{j v X_{s}}
$$

Hence, it suffices to compute

$$
\mathrm{E}\left[e^{j v\left(X_{t}-X_{s}\right)} \mid X_{s}\right]=\mathrm{E}\left[e^{j v\left(X_{t}-X_{s}\right)} \mid X_{s}-X_{0}\right], \quad \text { since } X_{0} \equiv 0
$$

Next observe that
$\mathrm{E}\left[\left(X_{t}-X_{s}\right)\left(X_{s}-X_{0}\right)\right]=\mathrm{E}\left[\left(\int_{s}^{t} g(\tau) d W_{\tau}\right)\left(\int_{0}^{s} g(\tau) d W_{\tau}\right)\right]=\int_{0}^{\infty} g(\tau)^{2} I_{[s, t]}(\tau) I_{[0, s]}(\tau) d \tau=0$.
Thus, $X_{t}-X_{s}$ and $X_{s}-X_{0}$ are uncorrelated. Since $\left\{X_{t}\right\}$ is Gaussian by HW Problem 14.17, the increments $X_{t}-X_{s}$ and $X_{s}-X_{0}$ are independent. Therefore,

$$
\mathrm{E}\left[e^{j v\left(X_{t}-X_{s}\right)} \mid X_{s}-X_{0}\right]=\mathrm{E}\left[e^{j v\left(X_{t}-X_{s}\right)}\right]
$$

Since $X_{t}-X_{s}$ is Gaussian, we just need to find its mean and variance. Since Wiener integrals have zero mean, $\mathrm{E}\left[X_{t}-X_{s}\right]=0$. Also,

$$
\mathrm{E}\left[\left(X_{t}-X_{s}\right)^{2}\right]=\mathrm{E}\left[\left(\int_{s}^{t} g(\tau) d W_{\tau}\right)^{2}\right]=\int_{s}^{t} g(\tau)^{2} d \tau
$$

Thus, $X_{t}-X_{s} \sim N\left(0, \int_{s}^{t} g(\tau)^{2} d \tau\right)$, and

$$
\begin{equation*}
\mathrm{E}\left[e^{j v X_{t}} \mid X_{s}\right]=\exp \left[j v X_{s}-\frac{v^{2}}{2} \int_{s}^{t} g(\tau)^{2} d \tau\right] \tag{*}
\end{equation*}
$$

Alternative Solution. The key fact we need is that $\left\{X_{t}\right\}$ is a Gaussian process by HW Problem 14.17. Hence, the conditional distribution of X_{t} given X_{s} is completely determined by $\mathrm{E}\left[X_{t} \mid X_{s}\right]$ and the error covariance $C_{X_{t} \mid X_{s}}:=C_{X_{t}}-A C_{X_{s} X_{t}}$, where A solves $A C_{X_{s}}=C_{X_{t} X_{s}}$. Since Wiener integrals have zero mean,

$$
C_{X_{t}}=\mathrm{E}\left[X_{t}^{2}\right]=\mathrm{E}\left[\left(\int_{0}^{t} g(\tau) d W_{\tau}\right)^{2}\right]=\int_{0}^{t} g(\tau)^{2} d \tau, \quad C_{X_{s}}=\mathrm{E}\left[X_{s}^{2}\right]=\int_{0}^{s} g(\tau)^{2} d \tau
$$

and since we have a scalar process,

$$
C_{X_{s} X_{t}}=C_{X_{t} X_{s}}=\mathrm{E}\left[X_{t} X_{s}\right]=\mathrm{E}\left[\left(\int_{0}^{t} g(\tau) d W_{\tau}\right)\left(\int_{0}^{s} g(\tau) d W_{\tau}\right)\right]=\int_{0}^{s} g(\tau)^{2} d \tau, \quad \text { since } s<t
$$

It now follows that $A=1, \mathrm{E}\left[X_{t} \mid X_{s}\right]=X_{s}$, and $C_{X_{t} \mid X_{s}}=\int_{s}^{t} g(\tau)^{2} d \tau$. In other words, $X_{t} \mid X_{s} \sim$ $N\left(X_{s}, C_{X_{t} \mid X_{s}}\right)$ and so $(*)$ holds.

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05-7:05 pm in 2535 EH Page 3
3. Let Y_{1}, Y_{2}, \ldots be i.i.d. with common density f, and let g be another density. For simplicity, assume both densities are strictly positive, and assume that the divergence

$$
\mathscr{D}(f \| g):=\int_{-\infty}^{\infty} f(y) \log \frac{f(y)}{g(y)} d y
$$

is finite. Put

$$
w(y):=\frac{f(y)}{g(y)}
$$

and

$$
X_{n}:=\prod_{k=1}^{n} w\left(Y_{k}\right)
$$

Determine whether or not $X_{n}^{1 / n}$ converges almost surely. If it does, explain why and identify the limit; if not, give a counterexample.
Solution. Consider the sequence

$$
Z_{n}:=\log X_{n}^{1 / n}=\frac{1}{n} \log X_{n}=\frac{1}{n} \sum_{k=1}^{n} \log w\left(Y_{k}\right)
$$

Since the Y_{k} have density f,

$$
\mathrm{E}\left[\log w\left(Y_{k}\right)\right]=\int_{-\infty}^{\infty} f(y) \log w(y) d y=\int_{-\infty}^{\infty} f(y) \log \frac{f(y)}{g(y)} d y=\mathscr{D}(f \| g)
$$

which is assumed finite. By the strong law of large numbers, $Z_{n} \xrightarrow{\text { a.s. }} \mathscr{D}(f \| g)$. Hence, $X_{n}^{1 / n}=$ $\exp \left(Z_{n}\right) \xrightarrow{\text { a.s. }} \exp [\mathscr{D}(f \| g)]$.
4. Suppose X_{n} converges in distribution to X, and Y_{n} converges in distribution to Y. Does $X_{n}+Y_{n}$ converge in distribution to $X+Y$? Prove it is true or give a counterexample.
Discussion. Here are two ways to see how we might construct a counterexample. First suppose X_{n} and Y_{n} are independent. Then

$$
\mathrm{E}\left[e^{j v\left(X_{n}+Y_{n}\right)}\right]=\mathrm{E}\left[e^{j v X_{n}}\right] \mathrm{E}\left[e^{j v Y_{n}}\right] \rightarrow \mathrm{E}\left[e^{j v X}\right] \mathrm{E}\left[e^{j v Y}\right]
$$

However, there is no requirement that X and Y be independent. Hence, if we can find X and Y with the correct marginal distributions, but with X and Y dependent, we will have a counterexample. A second approach is to make X_{n} and Y_{n} dependent, but X and Y independent.
Solution 1. Consider the case in which X_{n}, Y_{n}, and X are all $N(0,1)$ with X_{n} and Y_{n} being independent for each n. Put $Y:=-X$ so that Y is also $N(0,1)$. Then $F_{X_{n}}(x)=F_{X}(x)$ for all n and $F_{Y_{n}}(y)=F_{Y}(y)$ for all n. However, $X_{n}+Y_{n} \sim N(0,2)$, while $X+Y=0$.
Solution 2. Let X_{n}, X, and Y be uniform $[0,1]$, with X and Y being independent. Put $Y_{n}:=1-X_{n}$ so that Y_{n} is also uniform $[0,1]$. Then $X_{n}+Y_{n}=1$, but $X+Y$ has a triangular density on $[0,2]$.

ECE 730, Lec. 1 Final Exam Wednesday, 18 December 2013 5:05-7:05 pm in 2535 EH Page 4
5. Consider a sequence of random variables X_{n} such that $\mathrm{E}\left[X_{n}\right] \rightarrow 0$. If $X_{n} \geq 0$, then writing $\mathrm{E}\left[\left|X_{n}-0\right|\right]=\mathrm{E}\left[\left|X_{n}\right|\right]=\mathrm{E}\left[X_{n}\right] \rightarrow 0$ shows that X_{n} converges in mean of order one to zero. What if we do not have $X_{n} \geq 0$? Give an example of a sequence having all of the following properties:

- $\mathrm{E}\left[X_{n}\right]>0$,
- $\mathrm{E}\left[X_{n}\right] \rightarrow 0$,
- X_{n} does not converge in mean of order one to zero.

Solution. Let X be any random variable satisfying the conditions $0<\mathrm{E}[|X|]<\infty$ and $\mathrm{E}[X]=0$. Let m_{n} be any sequence of positive numbers converging to zero. Put $X_{n}:=m_{n}+X$. Then $\mathrm{E}\left[X_{n}\right]=m_{n}$, which is positive and converges to zero. Furthermore,

$$
\mathrm{E}\left[\left|X_{n}-X\right|\right]=m_{n} \rightarrow 0
$$

shows that X_{n} converges in mean of order one to X. But the condition $\mathrm{E}[|X|]>0$ means that X is not the zero random variable. Hence, X_{n} does not converge in mean of order one to zero. For a specific example, use $X \sim N(0,1)$ and $m_{n}=1 / n$. Here it is obvious that X is not the zero random variable.
Alternative Solution. Suppose you did not start with a random variable X as above, but instead started with random variables Y_{n} with densities $f\left(y-m_{n}\right)$, where again m_{n} is a sequence of positive numbers converging to zero, and f is a density with zero mean. In this case, let X also have density f, and put $X_{n}:=m_{n}+X$ so that the density of X_{n} is the same as the density of Y_{n}. Then by the argument above, $\mathrm{E}\left[\left|X_{n}\right|\right] \nrightarrow 0$, and since Y_{n} and X_{n} have the same density,

$$
\mathrm{E}\left[\left|Y_{n}\right|\right]=\mathrm{E}\left[\left|X_{n}\right|\right] \nrightarrow 0 .
$$

Alternative Solution. Suppose $\mathrm{P}\left(X_{n}=1+1 / n\right)=1 / 2$ and $\mathrm{P}\left(X_{n}=-1\right)=1 / 2$. Then $\mathrm{E}\left[X_{n}\right]=$ $1 /(2 n)$, which is positive and converges to zero, while $\mathrm{E}\left[\left|X_{n}\right|\right]=1+1 /(2 n) \rightarrow 1 \neq 0$.

