ECE 730 Exam 1 27 October 2014 5:15–6:45 pm in 3534 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring one sheet of 8.5 in. \times 11 in. paper on which you have prepared formulas.

1. Let X and W be independent random variables with zero means and unit variances. If $Y := \beta X + \sigma W$, find the **linear** MMSE estimate of X based on Y. Your answer should be an explicit formula in terms of β , σ , and Y. Justify your answer.

Solution. From Chapter 8, we know that the linear MMSE estimate of *X* based on *Y* is equal to $A(Y - m_Y) + m_X$, where $AC_Y = C_{XY}$. In this problem, $m_X := E[X] = 0$ and E[W] = 0 are given. Hence, $m_Y = E[\beta X + \sigma W] = 0$. Next, since *X* and *W* are independent $var(\beta X + \sigma W) = \beta^2 var(X) + \sigma^2 var(W) = \beta^2 + \sigma^2$. Thus, $C_Y = \beta^2 + \sigma^2$. More easily, $C_{XY} = E[X(\beta X + \sigma W)] = \beta E[X^2] = \beta$ since *X* and *W* are independent with zero means and unit variances. Putting this all together, we have $A = \beta/(\beta^2 + \sigma^2)$ and the linear MMSE estimate is $\beta Y/(\beta^2 + \sigma^2)$.

Let Ω := (-∞,∞), and let A denote the collection of all subsets of Ω of the form (a,b], (-∞,a], and (b,∞) for all a and b with -∞ < a < b < ∞. Let A also include Ω and the empty set Ø. Determine whether or not A is a σ-algebra. Justify your answer.

Solution. No. Notice that $(0,1]^c = (-\infty,0] \cup (1,\infty)$ is the union of sets in \mathscr{A} , but is not itself in \mathscr{A} .

Alternative Solution. Consider the sequence $A_n := (1 - 1/n, 1] \in \mathscr{A}$. Then $\bigcap_{n=1}^{\infty} A_n = \{1\} \notin \mathscr{A}$.

3. On Campus Drive, the speed limit is 40 mph, and vehicle speeds have probability density*

$$f(x) := \begin{cases} \frac{1}{5}e^{-(x-35)/5}, & x \ge 35, \\ 0, & x < 35. \end{cases}$$

A police officer issues a ticket if a vehicle is going faster than 47 mph. If 10 vehicles pass the police officer, find the variance of the number of tickets issued. **State any additional assumptions you need to compute your answer. Justify the steps of your calculation.**

Solution. Let X_k denote the speed of the kth vehicle. Then the number of tickets written is

$$T := \sum_{k=1}^{10} I_{(47,\infty)}(X_k).$$

We must compute var(*T*). We **assume** the X_k are **i.i.d.**[†] with density *f*. Then *T* is the sum of the i.i.d. Bernoulli(*p*) random variables $I_{(47,\infty)}(X_k)$. Hence, *T* is binomial(10, *p*), where, with $\lambda := 1/5$, $x_0 := 35$, and x = 47,

$$p := \mathsf{P}(X_k > x) = \int_x^\infty \lambda e^{-\lambda(\xi - x_0)} d\xi = -e^{-\lambda(\xi - x_0)} \Big|_{\xi = x}^{\xi = \infty} = e^{-\lambda(x - x_0)} = e^{-(47 - 35)/5} = e^{-12/5}.$$

Since T is binomial, $var(T) = 10p(1-p) = 10e^{-12/5}(1-e^{-12/5}) \approx 0.82488$.

^{*}Although it was not required to do the problem, did you notice that the mean value of this density is 40 mph?

[†]Do you think this is a reasonable assumption? If the cars near you are speeding, you are likely to speed also. On the other hand, if the cars are a minute or two apart, then their speeds may be independent.

4. Let *X* and *Y* be independent random variables with $X \sim \text{Erlang}(m = 2, \lambda = 1)$ and $Y \sim \text{uniform}[0, 1/2]$. Simplify

$$\mathsf{E}\bigg[\int_0^Y e^{tX}\,dt\bigg].$$

Your answer should have NO integrals. Justify the steps of your calculation. *Solution*. To begin, write

$$\mathsf{E}\left[\int_{0}^{Y} e^{tX} dt\right] = \mathsf{E}\left[\frac{e^{YX} - 1}{X}\right] = \mathsf{E}\left[\frac{e^{YX}}{X}\right] - \mathsf{E}[1/X].$$

Then compute $E[1/X] = \int_0^\infty (1/x) f_X(x) dx = \int_0^\infty (1/x) \cdot x e^{-x} dx = \int_0^\infty e^{-x} dx = 1$. Next, using the law of total probability, substitution, and independence,

$$\mathsf{E}\left[\frac{e^{YX}}{X}\right] = \int_{-\infty}^{\infty} \mathsf{E}\left[\frac{e^{YX}}{X}\middle| Y = y\right] f_Y(y) \, dy = 2\int_0^{1/2} \mathsf{E}\left[\frac{e^{yX}}{X}\middle| Y = y\right] dy = 2\int_0^{1/2} \mathsf{E}\left[\frac{e^{yX}}{X}\right] dy.$$

Now compute

$$\mathsf{E}\left[\frac{e^{yX}}{X}\right] = \int_{-\infty}^{\infty} \frac{e^{yx}}{x} f_X(x) \, dx = \int_0^{\infty} \frac{e^{yx}}{x} \cdot x e^{-x} \, dx = \int_0^{\infty} e^{x(y-1)} \, dx = \frac{e^{x(y-1)}}{y-1} \Big|_{x=0}^{x=\infty} = \frac{1}{1-y},$$

where the last step uses the fact that $y \in [0, 1/2]$ implies y - 1 < 0. Putting this all together, we have

$$\mathsf{E}\left[\frac{e^{YX}}{X}\right] = 2\int_0^{1/2} \frac{1}{1-y} \, dy = -2\ln(1-y) \Big|_{y=0}^{y=1/2} = 2\ln 1 - 2\ln(1/2) = -2\ln(1/2) = 2\ln 2,$$

and then

$$\mathsf{E}\bigg[\int_0^Y e^{tX} \, dt\bigg] = (2\ln 2) - 1.$$

Alternative Solution. Using the law of total probability, substitution, and independence, write

$$\begin{split} \mathsf{E}\bigg[\int_0^Y e^{tX} dt\bigg] &= \int_0^{1/2} \mathsf{E}\bigg[\int_0^Y e^{tX} dt \bigg| Y = y\bigg] f_Y(y) dy = \int_0^{1/2} \mathsf{E}\bigg[\int_0^y e^{tX} dt \bigg| Y = y\bigg] f_Y(y) dy \\ &= \int_0^{1/2} \mathsf{E}\bigg[\int_0^y e^{tX} dt\bigg] f_Y(y) dy = \int_0^{1/2} \bigg(\int_0^y \mathsf{E}[e^{tX}] dt\bigg) f_Y(y) dy \\ &= \int_0^{1/2} \bigg(\int_0^y \frac{1}{(1-t)^2} dt\bigg) f_Y(y) dy = \int_0^{1/2} \bigg(\frac{1}{1-t}\bigg|_{t=0}^{t=y}\bigg) f_Y(y) dy \\ &= \int_0^{1/2} \bigg[\frac{1}{1-y} - 1\bigg] f_Y(y) dy = -2\bigg[\ln(1-y) + y\bigg]\bigg|_{y=0}^{y=1/2} = -1 + 2\ln 2. \end{split}$$

5. Let *X* and *Y* be jointly Gaussian random vectors. Let g(y) := E[X|Y = y]. Determine whether or not the error X - g(Y) is a Gaussian random vector. Justify your answer.

Solution. From Chapter 9 we know that $g(y) := \mathsf{E}[X|Y = y] = A(y - m_Y) + m_X$ where $AC_Y = C_{XY}$. Observe that

$$X - g(Y) = X - \{A(Y - m_Y) + m_X\} = X - AY + Am_Y - m_X = \begin{bmatrix} I & -A \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} + (Am_Y - m_X)$$

is an affine transformation of the Gaussian random vector [X', Y']'. Hence, X - g(Y) is a Gaussian random vector (recall the gray box on p. 365).

Remark. Now that you know the error is Gaussian, rewrite it as $(X - m_X) - A(Y - m_Y)$. This clearly has zero mean, and by the calculations used for review problem 8.34, the error has covariance matrix $C_X - AC_{YX}$. Hence, $X - g(Y) \sim N(0, C_X - AC_{YX})$. Note that this is *different* from the *conditional* distribution of X given Y = y.