ECE 730
 Exam 1

 21 October 2015

 21 October 2015

 5:15-6:30 pm in 2540 EH

 5:15-6:30 pm in 2540 EH}

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring one sheet of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

1. Let $Y \sim N\left(0, \sigma^{2}\right)$, and given $Y=y$, let $X \sim \exp \left(y^{2}\right)$. Find $\mathrm{E}\left[X^{2} Y^{6}\right]$. Evaluate all integrals.
2. There are n students in a classroom, and each student has a random number of pencils X_{i}, where the X_{i} are i.i.d. uniformly distributed on $\{0,1,2,3,4,5,6,7,8,9\}$. For fixed k in the range $0, \ldots, n$, find the probability that exactly k students have three or more pencils.
3. Let U and Y be zero-mean random vectors having given covariance matrices C_{Y} and $C_{U Y}$. Let A solve $A C_{Y}=C_{U Y}$, where C_{Y} is not assumed to be invertible. Find the linear MMSE estimate of $X:=\left[U^{\prime} Y^{\prime}\right]^{\prime}$ based on Y. Justify your answer.
4. Consider random variables $U=X+Y$ and $V=X-Y$. If U and V are jointly Gaussian, determine whether or not X and Y are jointly Gaussian. Justify your answer.
5. Let Ω be a nonempty set, and let \mathscr{A} be a σ-algebra of subsets of Ω (but not the collection of all subsets of Ω). Fix any set $B \subset \Omega$, where $B \notin \mathscr{A}$. Put $\mathscr{C}:=\{A \cap B: A \in \mathscr{A}\}$. Determine whether or not \mathscr{C} is a σ-algebra of B. Hint: To address this question, it is essential to take complements of subsets of B relative to . In other words, if $D \subset B$, then the complement of D relative to B is $D^{\mathrm{c}} \cap B$.
