ECE 730
 Exam 1

 21 October 2015

 21 October 2015

 5:15-6:30 pm in 2540 EH

 5:15-6:30 pm in 2540 EH}

100 Points

Justify your answers!
 Be precise!

Closed Book

Closed Notes

You may bring one sheet of $8.5 \mathrm{in} . \times 11 \mathrm{in}$. paper on which you have prepared formulas.

ECE 730, Lec. 1 Exam 1 Wednesday, October 21, 2015 5:15-6:30 pm in 2540 EH Page 1

1. Let $Y \sim N\left(0, \sigma^{2}\right)$, and given $Y=y$, let $X \sim \exp \left(y^{2}\right)$. Find $\mathrm{E}\left[X^{2} Y^{6}\right]$. Evaluate all integrals.

Solution. Write

$$
\begin{aligned}
\mathrm{E}\left[X^{2} Y^{2}\right]=\int_{-\infty}^{\infty} \mathrm{E}\left[X^{2} Y^{6} \mid Y=y\right] f_{Y}(y) d y & =\int_{-\infty}^{\infty} \mathrm{E}\left[X^{2} y^{6} \mid Y=y\right] f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} \mathrm{E}\left[X^{2} \mid Y=y\right] y^{6} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty}\left(2 / y^{4}\right) y^{6} f_{Y}(y) d y=2 \mathrm{E}\left[Y^{2}\right]=2 \sigma^{2}
\end{aligned}
$$

2. There are n students in a classroom, and each student has a random number of pencils X_{i}, where the X_{i} are i.i.d. uniformly distributed on $\{0,1,2,3,4,5,6,7,8,9\}$. For fixed k in the range $0, \ldots, n$, find the probability that exactly k students have three or more pencils.
Solution. Notice that $\mathbf{1}_{\left\{X_{i} \geq 3\right\}}=1$ if and only if the i th student has three or more students. The number of students having three or more pencils is

$$
Y=\sum_{i=1}^{n} \mathbf{1}_{\left\{X_{i} \geq 3\right\}},
$$

and we must find $\mathrm{P}(Y=k)$. Since $Y \sim \operatorname{binomial}(n, p)$, where

$$
p=\mathrm{P}\left(X_{i} \geq 3\right)=\mathrm{P}\left(X_{i} \in\{3,4,5,6,7,8,9\}\right)=7 / 10=0.7
$$

we have $\mathrm{P}(Y=k)=\binom{n}{k}(0.7)^{k}(0.3)^{n-k}$.
3. Let U and Y be zero-mean random vectors having given covariance matrices C_{Y} and $C_{U Y}$. Let A solve $A C_{Y}=C_{U Y}$, where C_{Y} is not assumed to be invertible. Find the linear MMSE estimate of $X:=\left[U^{\prime} Y^{\prime}\right]^{\prime}$ based on Y. Justify your answer.
Solution. We need to find B such that

$$
\begin{aligned}
0 & =\mathrm{E}\left[\left(\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right] Y\right)^{\prime}\left(\left[\begin{array}{l}
U \\
Y
\end{array}\right]-\left[\begin{array}{l}
A \\
B
\end{array}\right] Y\right)\right] \\
& =\mathrm{E}\left[\left[\left(C_{1} Y\right)^{\prime}\left(C_{2} Y\right)^{\prime}\right]\left[\begin{array}{l}
U-A Y \\
Y-B Y
\end{array}\right]\right] \\
& =\mathrm{E}\left[\left(C_{1} Y\right)^{\prime}(U-A Y)\right]+\mathrm{E}\left[\left(C_{2} Y\right)^{\prime}(Y-B Y)\right]
\end{aligned}
$$

for all C_{1} and C_{2}. In this last line, the first expectation is zero because $A C_{Y}=C_{U Y}$ implies that A satisfies the orthogonality condition for estimating U based on Y. The second expectation will be zero if we take $B=I$. Hence, the optimal estimate is

$$
\left[\begin{array}{c}
A \\
I
\end{array}\right] Y .
$$

Alternative Solution. We know that $A C_{Y}=C_{U Y}$. We need to solve

$$
\left[\begin{array}{c}
A_{1} \\
A_{2}
\end{array}\right] C_{Y}=C_{\left[U^{\prime}, Y^{\prime}\right]^{\prime} Y}=\left[\begin{array}{c}
C_{U Y} \\
C_{Y}
\end{array}\right] .
$$

Taking $A_{1}=A$ and $A_{2}=I$ does this.

ECE 730, Lec. 1 Exam 1 Wednesday, October 21, 2015 5:15-6:30 pm in 2540 EH Page 2
4. Consider random variables $U=X+Y$ and $V=X-Y$. If U and V are jointly Gaussian, determine whether or not X and Y are jointly Gaussian. Justify your answer.
Solution. Yes. Notice that

$$
\left[\begin{array}{rr}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
U \\
V
\end{array}\right]=\left[\begin{array}{l}
X \\
Y
\end{array}\right] .
$$

Since $[X, Y]^{\prime}$ is the linear transformation of the Gaussian random vector $[U, V]^{\prime},[X, Y]^{\prime}$ is Gaussian.
5. Let Ω be a nonempty set, and let \mathscr{A} be a σ-algebra of subsets of Ω (but not the collection of all subsets of Ω). Fix any set $B \subset \Omega$, where $B \notin \mathscr{A}$. Put $\mathscr{C}:=\{A \cap B: A \in \mathscr{A}\}$. Determine whether or not \mathscr{C} is a σ-algebra of B. Hint: To address this question, it is essential to take complements of subsets of B relative to B. In other words, if $D \subset B$, then the complement of D relative to B is $D^{\mathrm{c}} \cap B$.

Solution. Yes. Clearly, \varnothing can be written as $\varnothing \cap B$ with $\varnothing \in \mathscr{A}$. Next, if $C=A \cap B$ with $A \in \mathscr{A}$, then the complement of C relative to B is

$$
C^{\mathrm{c}} \cap B=(A \cap B)^{\mathrm{c}} \cap B=\left(A^{\mathrm{c}} \cup B^{\mathrm{c}}\right) \cap B=\left(A^{\mathrm{c}} \cap B\right) \cup\left(B^{\mathrm{c}} \cap B\right)=\left(A^{\mathrm{c}} \cap B\right) \cup \varnothing=A^{\mathrm{c}} \cap B,
$$

where, of course, $A^{\mathrm{c}} \in \mathscr{A}$. Finally, if $C_{n} \in \mathscr{C}$ with $C_{n}=A_{n} \cap B$ for $A_{n} \in \mathscr{A}$, then

$$
\bigcup_{n=1}^{\infty} C_{n}=\bigcup_{n=1}^{\infty}\left(A_{n} \cap B\right)=\left(\bigcup_{n=1}^{\infty} A_{n}\right) \cap B
$$

where this last union belongs to \mathscr{A}.

