ECE 730 Exam 1 21 October 2015 5:15–6:30 pm in 2540 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

You may bring one sheet of 8.5 in. \times 11 in. paper on which you have prepared formulas.

1. Let $Y \sim N(0, \sigma^2)$, and given Y = y, let $X \sim \exp(y^2)$. Find $E[X^2Y^6]$. Evaluate all integrals. *Solution*. Write

$$E[X^{2}Y^{2}] = \int_{-\infty}^{\infty} E[X^{2}Y^{6}|Y = y]f_{Y}(y) dy = \int_{-\infty}^{\infty} E[X^{2}y^{6}|Y = y]f_{Y}(y) dy$$
$$= \int_{-\infty}^{\infty} E[X^{2}|Y = y]y^{6}f_{Y}(y) dy$$
$$= \int_{-\infty}^{\infty} (2/y^{4})y^{6}f_{Y}(y) dy = 2E[Y^{2}] = 2\sigma^{2}$$

2. There are *n* students in a classroom, and each student has a random number of pencils X_i , where the X_i are i.i.d. uniformly distributed on $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. For fixed *k* in the range $0, \ldots, n$, find the probability that exactly *k* students have three or more pencils.

Solution. Notice that $\mathbf{1}_{\{X_i \ge 3\}} = 1$ if and only if the *i*th student has three or more students. The number of students having three or more pencils is

$$Y=\sum_{i=1}^n\mathbf{1}_{\{X_i\geq 3\}},$$

and we must find P(Y = k). Since $Y \sim \text{binomial}(n, p)$, where

$$p = P(X_i \ge 3) = P(X_i \in \{3, 4, 5, 6, 7, 8, 9\}) = 7/10 = 0.7,$$

we have $\mathsf{P}(Y = k) = \binom{n}{k} (0.7)^k (0.3)^{n-k}$.

3. Let *U* and *Y* be zero-mean random vectors having given covariance matrices C_Y and C_{UY} . Let *A* solve $AC_Y = C_{UY}$, where C_Y is *not* assumed to be invertible. Find the *linear* MMSE estimate of X := [U' Y']' based on *Y*. Justify your answer.

Solution. We need to find *B* such that

$$0 = \mathsf{E}\left[\left(\begin{bmatrix} C_1\\ C_2 \end{bmatrix} Y\right)' \left(\begin{bmatrix} U\\ Y \end{bmatrix} - \begin{bmatrix} A\\ B \end{bmatrix} Y\right)\right]$$
$$= \mathsf{E}\left[\left[(C_1Y)' (C_2Y)'\right] \begin{bmatrix} U - AY\\ Y - BY \end{bmatrix}\right]$$
$$= \mathsf{E}[(C_1Y)'(U - AY)] + \mathsf{E}[(C_2Y)'(Y - BY)]$$

for all C_1 and C_2 . In this last line, the first expectation is zero because $AC_Y = C_{UY}$ implies that *A* satisfies the orthogonality condition for estimating *U* based on *Y*. The second expectation will be zero if we take B = I. Hence, the optimal estimate is

$$\begin{bmatrix} A \\ I \end{bmatrix} Y.$$

Alternative Solution. We know that $AC_Y = C_{UY}$. We need to solve

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} C_Y = C_{[U',Y']'Y} = \begin{bmatrix} C_{UY} \\ C_Y \end{bmatrix}.$$

Taking $A_1 = A$ and $A_2 = I$ does this.

4. Consider random variables U = X + Y and V = X - Y. If U and V are jointly Gaussian, determine whether or not X and Y are jointly Gaussian. Justify your answer.

Solution. Yes. Notice that

$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix}.$$

Since [X,Y]' is the linear transformation of the Gaussian random vector [U,V]', [X,Y]' is Gaussian.

5. Let Ω be a nonempty set, and let \mathscr{A} be a σ -algebra of subsets of Ω (but not the collection of *all* subsets of Ω). Fix any set $B \subset \Omega$, where $B \notin \mathscr{A}$. Put $\mathscr{C} := \{A \cap B : A \in \mathscr{A}\}$. Determine whether or not \mathscr{C} is a σ -algebra of \underline{B} . *Hint:* To address this question, it is essential to take complements of subsets of B relative to \underline{B} . In other words, if $D \subset B$, then the complement of D relative to \underline{B} is $D^c \cap B$.

Solution. Yes. Clearly, \emptyset can be written as $\emptyset \cap B$ with $\emptyset \in \mathscr{A}$. Next, if $C = A \cap B$ with $A \in \mathscr{A}$, then the complement of *C* relative to *B* is

$$C^{\mathsf{c}} \cap B = (A \cap B)^{\mathsf{c}} \cap B = (A^{\mathsf{c}} \cup B^{\mathsf{c}}) \cap B = (A^{\mathsf{c}} \cap B) \cup (B^{\mathsf{c}} \cap B) = (A^{\mathsf{c}} \cap B) \cup \emptyset = A^{\mathsf{c}} \cap B,$$

where, of course, $A^{c} \in \mathscr{A}$. Finally, if $C_{n} \in \mathscr{C}$ with $C_{n} = A_{n} \cap B$ for $A_{n} \in \mathscr{A}$, then

$$\bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} (A_n \cap B) = \left(\bigcup_{n=1}^{\infty} A_n\right) \cap B,$$

where this last union belongs to \mathscr{A} .