
ECE 730
Final Exam

22 December 2015
7:45–9:45 am in 3534 EH

100 Points

Justify your answers! Be precise!

Closed Book Closed Notes

You may bring two sheets of 8.5 in. × 11 in. paper
on which you have prepared formulas.

What does “Justify your answers” mean? It means that when a step in your analysis uses a result you
learned in this course, you need to write out what that result is. For example, when you use the law of
total probability or the smoothing property, you need to write, “by the law of total prob.” or “by the
smoothing property” in your exam booklet. You need to let me know that you understand why that
step in your analysis is valid. If you don’t write it down, I’ll assume you don’t understand and I will
take points off.
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1. A zero-mean, wide-sense stationary process Xt with correlation function RX(τ) = 1/(1+ τ2) is
applied to a linear, time-invariant system with impulse response h(t) = 6sin(2πt)/(2πt). Let Yt
denote the response of this system to the input Xt . Find a closed-form expression for E[Y 2

t ].

Solution. By (10.24), (10.23), and the tables,

E[Y 2
t ] =

∫
∞

−∞

SY ( f )d f =
∫

∞

−∞

|H( f )|2SX( f )d f =
∫

∞

−∞

|31[−1,1]( f )|2 πe−2π| f | d f

= 9
∫ 1

−1
πe−2π| f | d f

= 18π

∫ 1

0
e−2π f d f = 9(1− e−2π).

2. Let Wt be a Wiener process, and suppose
∫

∞

0 g(τ)2 dτ < ∞. For 0 < s < t, evaluate

E

[
(Wt−Ws)

∫ s

0
g(τ)dWτ

]
.

Justify the steps of your calculation.

Solution. Write

E

[
(Wt−Ws)

∫ s

0
g(τ)dWτ

]
= E

[(∫
∞

0
1[s,t](τ)dWτ

)(∫
∞

0
g(τ)1[0,s](τ)dWτ

)]
= σ

2
∫

∞

0
1[s,t](τ) ·g(τ)1[0,s](τ)dτ = σ

2
∫

∞

0
0dτ = 0.

3. We know from Example 13.11 that if E[|Xn−X |]→ 0, then E[Xn]→ E[X ]. Is the converse true?
In other words, if E[Xn]→ E[X ], does it follow that E[|Xn−X |]→ 0? If “yes,” give a proof; if
“no,” give a counterexample.

Solution. No. Let Y be any random variable with 0 < E[|Y |]< ∞ and E[Y ] = 0. Take Xn =Y and
X = 0. Then E[Xn] = E[Y ] = 0 = E[X ], but E[|Xn−X |] = E[|Y |] > 0. Some specific examples
include P(Y =±1) = 1/2; Y ∼ N(0,σ2); and Y ∼ Laplace(λ ).

Alternative Solution 1. We modify the foregoing by allowing X to be any zero-mean random
variable whose distribution is different from that of Y . Now it is a little harder to argue that
E[|Xn−X |] 6→ 0. Suppose otherwise. Then since convergence in mean of order one implies
convergence in distribution, Y = Xn converges in distribution to X ; i.e., Y and X have the same
distribution, which is a contradiction.

Alternative Solution 2. For another, easier modification, take X =−Y . In this case, E[|Xn−X |] =
2E[|Y |]> 0.



ECE 730, Lec. 1 Final Exam Tuesday, 22 December 2015 7:45–9:45 am in 3534 EH Page 2

4. Construct a sequence of random variables Xn converging almost surely to zero, but having

∞

∑
n=1

P(|Xn| ≥ ε) = ∞

for some ε > 0.

Solution. Let U ∼ uniform[0,1], and put Xn := 1[0,1/n](U). We have to demonstrate two things.
First, we have to show that Xn→ 0 amost surely. Second, we have to show that for some ε > 0,
we have ∑

∞
n=1P(|Xn| ≥ ε) = ∞.

1) If U(ω)> 0, then Xn(ω) = 0 for n > 1/U(ω), which implies that Xn(ω)→ 0. Equivalently,
{U > 0} ⊂ {Xn→ 0}, from which it follows that P(Xn→ 0) ≥ P(U > 0) = 1. Hence, Xn→ 0
with probability one (i.e., almost surely).

2) Next, for every 0 < ε < 1 (but not ε ≥ 1), we also have P(|Xn| ≥ ε) = P(U ≤ 1/n) = 1/n,
and so ∑

∞
n=1P(|Xn| ≥ ε) = ∑

∞
n=1 1/n = ∞.

An approach that does not work (but gives a proof of the SLLN under stronger assumptions
than Example 14.15). Let Y1,Y2, . . . be i.i.d. with zero mean, even density, and moment gener-
ating function M(s) that is finite in a neighborhood of the origin. Put Xn := (1/n)∑

n
k=1Yk. By

the strong law of large numbers, Xn converges almost surely to zero. However, as we now show,
∑

∞
n=1P(|Xn| ≥ ε)< ∞.

Fix any n, and let s > 0 be small enough that M(s/n) is finite. Then by the Chernoff bound
technique,

P(|Xn| ≥ ε) = 2P(Xn ≥ ε) = 2P(sXn ≥ sε) ≤ 2e−sεE[esXn ], by the Markov ineq.
= 2e−sεM(s/n)n

= 2exp
[
−sε +n lnM(s/n)

]
= 2exp

[
−n
{
(s/n)ε− lnM(s/n)

}]
.

To minimize the right-hand side, we need to maximize the quantity in braces. Although the
maximizing value of s may depend on n, the maximum value of the quantity in braces does not
depend on n. This value is

Ψ(ε) := sup
θ

[θε− lnM(θ)],

where the sup is over θ ≥ 0 for which M(θ) is finite. (Taking θ = 0 on the right of the above
display shows that Ψ(ε)≥ 0.) Then

Ψ(ε)≥ ε(s/n)− lnM(s/n),

and we can write
P(|Xn| ≥ ε)≤ 2e−nΨ(ε).

Hence, ∑
∞
n=1P(|Xn| ≥ ε)< ∞.
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5. Let X0,W1,W2,W3, . . . be independent, L1 random variables, and let ϕ(x) be a bounded function.
Put

Xn := Xn−1 +ϕ(Xn−1)Wn, n = 1,2, . . . .

For the case n = 2, derive the formula

E[Xn|X0,W1, . . . ,Wn−1] = Xn−1 +ϕ(Xn−1)E[Wn].

Justify the steps of your derivation!

Solution. To begin, write
X1 = X0 +ϕ(X0)W1, (∗)

and note that since X0,W1 ∈ L1 and since ϕ is bounded, X1 ∈ L1. It then similarly follows that
X2 = X1 +ϕ(X1)W2 ∈ L1. We are now able to write

E[X2|X0,W1] = E[X1|X0,W1]+E[ϕ(X1)W2|X0,W1], by Example 13.22 (linearity).

Eq. (∗) tells us that X1 is a function of X0 and W1. Hence, by the Remark in Problem 13.56,

E[X1|X0,W1] = X1.

Since ϕ(X1) is also a function of X0 and W1, Problem 13.56 itself yields

E[ϕ(X1)W2|X0,W1] = ϕ(X1)E[W2|X0,W1].

Finally, since W2 is independent of X0 and W1, we have by Example 13.21 that E[W2|X0,W1] =
E[W2]. Putting this all together, we have the desired formula,

E[X2|X0,W1] = X1 +ϕ(X1)E[W2].


