ECE 730, Lec. 1
 Exam 1
 Wednesday, 17 Oct. 2018
 5:00 pm - 6:30 pm
 2534 EH

100 Points

Justify your answers!

Closed Book
Closed Notes
No Calculators

You may bring one sheet of 8.5×11 paper with notes written on both sides.
The solutions of a quadratic equation $a s^{2}+b s+c=0$ are

$$
s=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

ECE 730, Lec. 1 Exam 1 Wednesday, 17 Oct. 2018, 5:00 pm - 6:30 pm

1. [20 pts.] Let X and Y be random vectors, and suppose you are given

$$
\begin{aligned}
m_{X}:=\mathrm{E}[X] & R_{X}:=\mathrm{E}\left[X X^{\prime}\right] \\
m_{Y}:=\mathrm{E}[Y] & R_{Y}:=\mathrm{E}\left[Y Y^{\prime}\right] \quad \text { and } \quad R_{X Y}:=\mathrm{E}\left[X Y^{\prime}\right] .
\end{aligned}
$$

Express the linear MMSE estimate of X based on Y using any of the above quantities as appropriate. If you need the inverse of a matrix, assume it exists.
2. [20 pts.] Let $X \sim \exp (\lambda)$, and given $X=x$, let the conditional density of Y be $N\left(x^{3}, \sigma^{2}\right)$. Compute $\mathrm{E}\left[Y^{2}\right]$. Show your work.
3. [20 pts.] Let $Y=(X+W)^{2}$, where $X \sim N(0,0.9), W \sim N(0,0.1)$, and X and W are independent. Find the density of Y. Justify your answer.
4. [20 pts.] If $X \sim \exp (\boldsymbol{\lambda})$ and $Y \sim \exp (\mu)$ are independent, find the density of $Z:=\max (X, Y)$. Show your work.
5. [20 pts.] Suppose X is a two-dimensional random vector with zero mean and covariance matrix

$$
C_{X}=\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & \varepsilon
\end{array}\right],
$$

where $\varepsilon>1$ is a parameter. Let $X=P Y$ be the Karhunen-Loève expansion of X. Find the covariance matrix of Y. Express your answer in terms of ε. Hint: This does not require finding the transformation P.

