ECE 730, Lec. 1
 Exam 1
 Wednesday, 17 Oct. 2018
 5:00 pm - 6:30 pm
 2534 EH

100 Points

Justify your answers!

Closed Book
Closed Notes
No Calculators

You may bring one sheet of 8.5×11 paper with notes written on both sides.
The solutions of a quadratic equation $a s^{2}+b s+c=0$ are

$$
s=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

1. [20 pts.] Let X and Y be random vectors, and suppose you are given

$$
\begin{array}{ll}
m_{X}:=\mathrm{E}[X] & R_{X}:=\mathrm{E}\left[X X^{\prime}\right] \\
m_{Y}:=\mathrm{E}[Y] & R_{Y}:=\mathrm{E}\left[Y Y^{\prime}\right]
\end{array} \quad \text { and } \quad R_{X Y}:=\mathrm{E}\left[X Y^{\prime}\right] .
$$

Express the linear MMSE estimate of X based on Y using any of the above quantities as appropriate. If you need the inverse of a matrix, assume it exists.
Solution. We know that the required estimate is $A\left(Y-m_{Y}\right)+m_{X}$, where A solves $A C_{Y}=C_{X Y}$. Since

$$
C_{Y}=R_{Y}-m_{Y} m_{Y}^{\prime}, \quad \text { and } \quad C_{X Y}=R_{X Y}-m_{X} m_{Y}^{\prime}
$$

we have

$$
A=\left(R_{X Y}-m_{X} m_{Y}^{\prime}\right)\left(R_{Y}-m_{Y} m_{Y}^{\prime}\right)^{-1}
$$

So the estimate is

$$
\left(R_{X Y}-m_{X} m_{Y}^{\prime}\right)\left(R_{Y}-m_{Y} m_{Y}^{\prime}\right)^{-1}\left(Y-m_{Y}\right)+m_{X} .
$$

2. [20 pts.] Let $X \sim \exp (\lambda)$, and given $X=x$, let the conditional density of Y be $N\left(x^{3}, \sigma^{2}\right)$. Compute $\mathrm{E}\left[Y^{2}\right]$. Show your work.
Solution. $\mathrm{E}\left[Y^{2}\right]=\mathrm{E}\left[\mathrm{E}\left[Y^{2} \mid X\right]\right]=\mathrm{E}\left[\sigma^{2}+\left(X^{3}\right)^{2}\right]=\sigma^{2}+6!/ \lambda^{6}$.
3. [20 pts.] Let $Y=(X+W)^{2}$, where $X \sim N(0,0.9), W \sim N(0,0.1)$, and X and W are independent. Find the density of Y. Justify your answer.
Solution. Since X and W are independent Gaussians, $X+W$ is also Gaussian, with zero mean and variance $0.9+0.1=1$, by Problem 4.55(a). Hence, Y is chi-squared with one degree of freedom by Problem 4.46.
4. [20 pts.] If $X \sim \exp (\lambda)$ and $Y \sim \exp (\mu)$ are independent, find the density of $Z:=\max (X, Y)$.

Show your work.
Solution. Since $Z \geq 0$, it suffices to consider $z>0$. For such z,

$$
F_{Z}(z)=\mathrm{P}(Z \leq z)=\mathrm{P}(\max (X, Y) \leq z)=\mathrm{P}(X \leq z, Y \leq z)=F_{X}(z) F_{Y}(z)
$$

Then

$$
\begin{aligned}
f_{Z}(z) & =\frac{d}{d z} F_{Z}(z)=f_{X}(z) F_{Y}(z)+F_{X}(z) f_{Y}(z)=\lambda e^{-\lambda z}\left(1-e^{-\mu z}\right)+\left(1-e^{-\lambda z}\right) \mu e^{-\mu z} \\
& =\lambda e^{-\lambda z}+\mu e^{-\mu z}-(\lambda+\mu) e^{-(\lambda+\mu) z}
\end{aligned}
$$

5. [20 pts.] Suppose X is a two-dimensional random vector with zero mean and covariance matrix

$$
C_{X}=\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & \varepsilon
\end{array}\right]
$$

where $\varepsilon>1$ is a parameter. Let $X=P Y$ be the Karhunen-Loève expansion of X. Find the covariance matrix of Y. Express your answer in terms of ε. Hint: This does not require finding the transformation P.

Solution. Since the covariance matrix of Y is diagonal with diagonal elements being the eigenvalues of C_{X}, it suffices to solve the characteristic equation

$$
\operatorname{det}\left(s I-C_{X}\right)=\operatorname{det}\left[\begin{array}{cc}
s-\varepsilon & -1 \tag{*}\\
-1 & s-\varepsilon
\end{array}\right]=s^{2}-2 \varepsilon s+\varepsilon^{2}-1=0
$$

By the quadratic formula,

$$
s=\frac{2 \varepsilon \pm \sqrt{4 \varepsilon^{2}-4\left(\varepsilon^{2}-1\right)}}{2}=\varepsilon \pm 1
$$

and follows that

$$
C_{Y}=\left[\begin{array}{cc}
\varepsilon+1 & 0 \tag{**}\\
0 & \varepsilon-1
\end{array}\right]
$$

Rather than using the quadratic formula, we could have rearranged the last equation in $(*)$ as $(s-\varepsilon)^{2}=1$. Taking square roots yields $|s-\varepsilon|=1$, or $s-\varepsilon= \pm 1$, which says that $s=\varepsilon \pm 1$.
Alternative Solution. The eigenvalues of C_{X} solve

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & \varepsilon
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\lambda\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

where $[u, v]^{\top}$ is not the zero vector. From the second equation, $u=(\lambda-\varepsilon) v$. Note that this implies $v \neq 0$, since otherwise $[u, v]^{\top}$ is the zero vector. Now rewrite the first equation as

$$
\begin{aligned}
v=(\lambda-\varepsilon) u & =(\lambda-\varepsilon)(\lambda-\varepsilon) v \\
& =(\lambda-\varepsilon)^{2} v
\end{aligned}
$$

Rewriting this as $\left[(\lambda-\varepsilon)^{2}-1\right] v=0$, and recalling that $v \neq 0$, we must have $(\lambda-\varepsilon)^{2}=1$ as in the above solution. So we again have that C_{Y} is given by $(* *)$.

