ECE 730, Lec. 1 Exam 1 Wednesday, 17 Oct. 2018 5:00 pm – 6:30 pm 2534 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

No Calculators

You may bring one sheet of 8.5×11 paper with notes written on both sides.

The solutions of a quadratic equation $as^2 + bs + c = 0$ are

$$s = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Exam 1

1. [20 pts.] Let X and Y be random vectors, and suppose you are given

$$m_X := \mathsf{E}[X] \qquad R_X := \mathsf{E}[XX'] \\ m_Y := \mathsf{E}[Y] \qquad R_Y := \mathsf{E}[YY'] \qquad \text{and} \qquad R_{XY} := \mathsf{E}[XY']$$

Express the **linear** MMSE estimate of *X* based on *Y* using any of the above quantities as appropriate. If you need the inverse of a matrix, assume it exists.

Solution. We know that the required estimate is $A(Y - m_Y) + m_X$, where A solves $AC_Y = C_{XY}$. Since

$$C_Y = R_Y - m_Y m'_Y$$
, and $C_{XY} = R_{XY} - m_X m'_Y$,

we have

$$A = (R_{XY} - m_X m'_Y)(R_Y - m_Y m'_Y)^{-1}.$$

So the estimate is

$$(R_{XY} - m_X m'_Y)(R_Y - m_Y m'_Y)^{-1}(Y - m_Y) + m_X$$

2. [20 pts.] Let $X \sim \exp(\lambda)$, and given X = x, let the conditional density of Y be $N(x^3, \sigma^2)$. Compute $E[Y^2]$. Show your work.

Solution. $E[Y^2] = E[E[Y^2|X]] = E[\sigma^2 + (X^3)^2] = \sigma^2 + 6!/\lambda^6.$

3. [20 pts.] Let $Y = (X + W)^2$, where $X \sim N(0, 0.9)$, $W \sim N(0, 0.1)$, and X and W are independent. Find the density of Y. Justify your answer.

Solution. Since X and W are independent Gaussians, X + W is also Gaussian, with zero mean and variance 0.9 + 0.1 = 1, by Problem 4.55(a). Hence, Y is chi-squared with one degree of freedom by Problem 4.46.

4. [20 pts.] If $X \sim \exp(\lambda)$ and $Y \sim \exp(\mu)$ are independent, find the density of $Z := \max(X, Y)$. Show your work.

Solution. Since $Z \ge 0$, it suffices to consider z > 0. For such z,

$$F_Z(z) = \mathsf{P}(Z \le z) = \mathsf{P}(\max(X, Y) \le z) = \mathsf{P}(X \le z, Y \le z) = F_X(z)F_Y(z).$$

Then

$$f_Z(z) = \frac{d}{dz} F_Z(z) = f_X(z) F_Y(z) + F_X(z) f_Y(z) = \lambda e^{-\lambda z} (1 - e^{-\mu z}) + (1 - e^{-\lambda z}) \mu e^{-\mu z}$$

= $\lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}$.

ECE 730, Lec. 1

Exam 1

$$C_X = \begin{bmatrix} \varepsilon & 1 \\ 1 & \varepsilon \end{bmatrix},$$

where $\varepsilon > 1$ is a parameter. Let X = PY be the Karhunen–Loève expansion of X. Find the covariance matrix of Y. Express your answer in terms of ε . *Hint:* This does not require finding the transformation P.

Solution. Since the covariance matrix of Y is diagonal with diagonal elements being the eigenvalues of C_X , it suffices to solve the characteristic equation

$$\det(sI - C_X) = \det \begin{bmatrix} s - \varepsilon & -1 \\ -1 & s - \varepsilon \end{bmatrix} = s^2 - 2\varepsilon s + \varepsilon^2 - 1 = 0.$$
(*)

By the quadratic formula,

$$s = \frac{2\varepsilon \pm \sqrt{4\varepsilon^2 - 4(\varepsilon^2 - 1)}}{2} = \varepsilon \pm 1$$

and follows that

$$C_Y = \begin{bmatrix} \varepsilon + 1 & 0 \\ 0 & \varepsilon - 1 \end{bmatrix}. \tag{**}$$

Rather than using the quadratic formula, we could have rearranged the last equation in (*) as $(s-\varepsilon)^2 = 1$. Taking square roots yields $|s-\varepsilon| = 1$, or $s-\varepsilon = \pm 1$, which says that $s = \varepsilon \pm 1$.

Alternative Solution. The eigenvalues of C_X solve

$$\begin{bmatrix} \varepsilon & 1 \\ 1 & \varepsilon \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \end{bmatrix},$$

where $[u, v]^{\mathsf{T}}$ is not the zero vector. From the second equation, $u = (\lambda - \varepsilon)v$. Note that this implies $v \neq 0$, since otherwise $[u, v]^{\mathsf{T}}$ is the zero vector. Now rewrite the first equation as

$$v = (\lambda - \varepsilon)u = (\lambda - \varepsilon)(\lambda - \varepsilon)v$$

= $(\lambda - \varepsilon)^2 v$.

Rewriting this as $[(\lambda - \varepsilon)^2 - 1]v = 0$, and recalling that $v \neq 0$, we must have $(\lambda - \varepsilon)^2 = 1$ as in the above solution. So we again have that C_Y is given by (**).