ECE 730, Lec. 1 Final Exam Tuesday, 18 Dec. 2018 2:45 pm – 4:45 pm 3444 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

No Calculators

You may bring two sheets of 8.5×11 paper with notes written on both sides.

- 1. [15 pts.] Consider a linear, time-invariant system with impulse response $h(t) = e^{-t/\tau}u(t)$, where the time constant τ can lie in the range $0 < a \le \tau \le b < \infty$. Let Y_t denote the system response to a zero-mean, wide-sense stationary, white-noise process X_t with power spectral density $S_X(f) = N_0/2$. Determine the value of the time constant τ that minimizes the expected instantaneous output power $\mathbb{E}[Y_t^2]$. Justify your answer.
- 2. [20 pts.] Let X_n be a time-homogeneous Markov chain with transition probabilities p_{ij} and initial distribution $v_i := P(X_0 = i)$. Determine whether or not

$$\mathsf{P}(X_0 = i | X_1 = j, X_2 = k, X_3 = \ell) = \mathsf{P}(X_0 = i | X_1 = j).$$

Justify your answer.

- 3. Suppose $\{N_t, t \ge 0\}$ is a Poisson process, and $E[N_6] = \mu$.
 - (a) [10 pts.] Express $P(N_2 \le 2)$ directly in terms of μ .
 - (b) [15 pts.] Given 0 < s < t, find the conditional probability generating function, $E[z^{N_t}|N_s]$.
- 4. Suppose X_n converges in probability to X. Put $Y_n := X_n e^{-X_n}$ and $Y := X e^{-X}$.
 - (a) [10 pts.] Does Y_n converge in probability to Y? Briefly explain why or why not.
 - (b) [10 pts.] Does $E[Y_n] \rightarrow E[Y]$? Briefly explain why or why not.
- 5. [20 pts.] Let X_i be a discrete-time, Gaussian random process, and consider the new process,

$$Y_k := \sum_{i=-\infty}^{\infty} h(k-i)X_i,$$

where $h(\cdot)$ is a given, deterministic, finite-duration signal. (Because $h(\cdot)$ is finite duration, for each fixed k, the above sum contains only finitely many terms, which means we do not have to worry about limits.) Determine whether or not Y_k is a Gaussian random process. Justify your answer.