ECE 730, Lec. 1 Exam 1 Monday, 21 Oct. 2019 4:14 pm – 5:45 pm 2540 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

No Calculators

You may bring one sheet of 8.5 \times 11 paper with notes written on both sides.

PART 1 – Straightforward Application of Tools We've Studied

- 1. [20 pts.] Let $X \sim \text{gamma}(p, 1)$, and suppose that given X = x, Y is conditionally $\exp(x)$. Also assume that given X = x and Y = y, Z is conditionally $N(0, y^2)$. Find $E[X^4YZ^2]$.
- 2. [20 pts.] A new bridge has 4 cables. Let X_i denote the force on the *i*th cable. A cable will fail if the force on it exceeds *t*. If at most one cable fails, the bridge will remain standing.¹
 - (a) Write an expression for the event that the bridge remains standing.
 - (b) Assuming the X_i are i.i.d. $\exp(\lambda)$ random variables, find a formula for the probability that the bridge remains standing.
- 3. [20 pts.] Suppose Z = X + Y, where X and Y are independent $\exp(\lambda)$ random variables. Find a formula for the conditional density $f_{Y|Z}(y|z)$ and specify the range of values of y and z where your density positive.

PART 2 – More Abstract

- 4. [20 pts.] Let u_1, \ldots, u_n be an orthonormal basis for \mathbb{R}^n , and let Z be a zero mean random variable with variance σ^2 . Put $X := Zu_1$. Find the "ingredients" of the Karhunen–Loève expansion of the random vector X; i.e., find a diagonal matrix Λ and a matrix P such $P' \operatorname{cov}(X)P = \Lambda$ and P'P = I. Justify your answer.
- 5. [20 pts.] Consider the problem of estimating a random variable X based on repeated noisy measurements $Y_i = X + V_i$. Suppose that X, V_1, \ldots, V_n are uncorrelated random variables, with the V_i all having mean zero and variance σ_V^2 , and with X having mean m_X and variance σ_X^2 . Since X is a scalar, the linear MMSE estimate of X based on the vector $Y := [Y_1, \ldots, Y_n]'$ has the form $A(Y m_Y) + m_X$ where A is a **row vector**, say $A = [A_1, \ldots, A_n]$. Find A.

¹This was not the case for the Morandi bridge, which collapsed when the first cable stay failed. See https://www.pbs.org/wgbh/nova/video/why-bridges-collapse/?linkId=74764116