ECE 730, Lec. 1 Exam 1 Monday, 21 Oct. 2019 4:14 pm – 5:45 pm 2540 EH

100 Points

Justify your answers!

Be precise!

Closed Book

Closed Notes

No Calculators

You may bring one sheet of 8.5 \times 11 paper with notes written on both sides.

PART 1 – Straightforward Application of Tools We've Studied

1. [20 pts.] Let $X \sim \text{gamma}(p, 1)$, and suppose that given X = x, Y is conditionally $\exp(x)$. Also assume that given X = x and Y = y, Z is conditionally $N(0, y^2)$. Find $E[X^4YZ^2]$.

Solution. Using the law of total probability,

$$\begin{split} \mathsf{E}[X^4YZ^2] &= \int_0^\infty \int_0^\infty \mathsf{E}[X^4YZ^2|Y=y,X=x] f_{XY}(x,y) \, dy \, dx \\ &= \int_0^\infty \int_0^\infty \mathsf{E}[x^4yZ^2|Y=y,X=x] f_{XY}(x,y) \, dy \, dx, \quad \text{by substitution,} \\ &= \int_0^\infty \int_0^\infty x^4 y \underbrace{\mathsf{E}[Z^2|Y=y,X=x]}_{=y^2} f_{XY}(x,y) \, dy \, dx, \quad \text{since 2nd moment of } N(0,\sigma^2) \text{ is } \sigma^2, \\ &= \mathsf{E}[X^4Y^3] \\ &= \int_0^\infty \mathsf{E}[X^4Y^3|X=x] f_X(x) \, dx, \quad \text{by the law of total probability,} \\ &= \int_0^\infty \mathsf{E}[x^4Y^3|X=x] f_X(x) \, dx, \quad \text{by substitution,} \\ &= \int_0^\infty x^4 \underbrace{\mathsf{E}[Y^3|X=x]}_{=3!/x^3} f_X(x) \, dx, \quad \text{since nth moment of } \exp(\lambda) \text{ is } n!/\lambda^n, \\ &= \int_0^\infty 6x f_X(x) \, dx \\ &= 6\mathsf{E}[X] = 6p, \quad \text{since first moment of } \operatorname{gamma}(p,\lambda) \text{ is } \Gamma(1+p)/[\lambda\Gamma(p)] = p/\lambda. \end{split}$$

Exam 1

- 2. [20 pts.] A new bridge has 4 cables. Let X_i denote the force on the *i*th cable. A cable will fail if the force on it exceeds *t*. If at most one cable fails, the bridge will remain standing.¹
 - (a) Write an expression for the event that the bridge remains standing.
 - (b) Assuming the X_i are i.i.d. $\exp(\lambda)$ random variables, find a formula for the probability that the bridge remains standing.

Solution.

(a) The event that the bridge remains standing can be expressed as

$$R:=\bigcup_{k=1}^4 \left(\bigcap_{j\neq k} \{X_j \le t\}\right).$$

However, since the 4 events being "unioned" are not pairwise disjoint, it is more convenient to write R as the union of 5 pairwise disjoint events,

$$R = \bigcup_{i=1}^{4} \left[\{X_i > t\} \cap \left(\bigcap_{j \neq i} \{X_j \le t\} \right) \right]$$
$$\cup \left(\{X_1 \le t\} \cap \{X_2 \le t\} \cap \{X_3 \le t\} \cap \{X_4 \le t\} \right).$$

(b) The corresponding probability is the sum of the probabilities of the 5 disjoint events:

$$\begin{split} \mathsf{P}(R) &= 4e^{-\lambda t}(1-e^{-\lambda t})^3 + (1-e^{-\lambda t})^4 \\ &= (1-e^{-\lambda t})^3 [4e^{-\lambda t} + (1-e^{-\lambda t})] \\ &= (1-e^{-\lambda t})^3 (1+3e^{-\lambda t}). \end{split}$$

¹This was not the case for the Morandi bridge, which collapsed when the first cable stay failed. See https://www.pbs.org/wgbh/nova/video/why-bridges-collapse/?linkId=74764116

Exam 1

3. [20 pts.] Suppose Z = X + Y, where X and Y are independent $\exp(\lambda)$ random variables. Find a formula for the conditional density $f_{Y|Z}(y|z)$ and specify the range of values of y and z where your density positive.

Solution. Begin by writing

$$f_{Y|Z}(y|z) = \frac{f_{YZ}(y,z)}{f_Z(z)} = \frac{f_{Z|Y}(z|y)f_Y(y)}{f_Z(z)}.$$

Since Z is the sum of i.i.d. $\exp(\lambda)$ random variables, we know from Problem 4.55(c) that Z is $\operatorname{Erlang}(2,\lambda)$, which means that $f_Z(z) = \lambda(\lambda z)e^{-\lambda z}$ for $z \ge 0$. Next, we find $f_{Z|Y}(z|y)$ using substitution and independence. Write

$$\begin{split} F_{Z|Y}(z|y) &= \mathsf{P}(Z \le z | Y = y) = \mathsf{P}(X + Y \le z | Y = y) = \mathsf{P}(X + y \le z | Y = y) \\ &= \mathsf{P}(X \le z - y | Y = y) \\ &= \mathsf{P}(X \le z - y) = F_X(z - y). \end{split}$$

It follows that $f_{Z|Y}(z|y) = f_X(z-y)$. Putting this all together, we have

$$f_{Y|Z}(y|z) = \frac{f_X(z-y)f_Y(y)}{f_Z(z)} = \frac{\lambda e^{-\lambda(z-y)} \cdot \lambda e^{-\lambda y}}{\lambda(\lambda z)e^{-\lambda z}} = \frac{1}{z}, \quad 0 \le y \le z, \text{and } z > 0,$$

where the bounds on *y* come from the facts that $f_X(z-y) = 0$ for $z-y \le 0$, $f_Y(y) = 0$ for $y \le 0$, and $f_Z(z) = 0$ for $z \le 0$. Notice that $f_{Y|Z}(\cdot|z) \sim \text{uniform}[0,z]$, and for future reference, E[Y|Z=z] = z/2. How does this compare with the linear MMSE estimator of *Y* based on *Z*?

PART 2 – More Abstract

4. [20 pts.] Let u_1, \ldots, u_n be an orthonormal basis for \mathbb{R}^n , and let Z be a zero mean random variable with variance σ^2 . Put $X := Zu_1$. Find the "ingredients" of the Karhunen–Loève expansion of the random vector X; i.e., find a diagonal matrix Λ and a matrix P such $P' \operatorname{cov}(X)P = \Lambda$ and P'P = I. Justify your answer.

Solution. First observe that $cov(X) = E[XX'] = E[Zu_1u'_1Z' = E[Z^2]u_1u'_1 = \sigma^2 u_1u'_1$. In the diagonalization of a symmetric matrix $C = P\Lambda P'$, if we let p_k denote the *k*th column of *P*, then we can also write

$$C = \sum_{k=1}^n \lambda_k p_k p'_k.$$

With this observation, the problem can be solved with $\Lambda = \text{diag}(\sigma^2, 0, \dots, 0)$ and $P = [u_1|\cdots|u_n]$. *Alternative Solution.* We begin with $\text{cov}(X) = \sigma^2 u_1 u'_1$. Since we know that the columns of P

must be orthonormal, this suggests that we take *P* to be the matrix with columns u_1, \ldots, u_n , and observe that $u'_1P = [1, 0, \ldots, 0]$. Then

$$P' \operatorname{cov}(X) P = \sigma^2 P' u_1 u_1' P = \sigma^2 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & 0 & & \\ \vdots & \ddots & \\ 0 & 0 & & 0 \end{bmatrix} =: \Lambda.$$

Since cov(X), *P*, and Λ satisfy the required relationships, it follows that $Y = P'X = P'Zu_1 = ZP'u_1 = [Z, 0, ..., 0]'$; i.e., $Y_1 = Z$ and $Y_i = 0$ for i = 2, ..., n. We also have $PY = Zu_1 = X$. In other words, *X* was given in the form of the Karhunen–Loève expansion.

5. [20 pts.] Consider the problem of estimating a random variable X based on repeated noisy measurements $Y_i = X + V_i$. Suppose that X, V_1, \ldots, V_n are uncorrelated random variables, with the V_i all having mean zero and variance σ_V^2 , and with X having mean m_X and variance σ_X^2 . Since X is a scalar, the linear MMSE estimate of X based on the vector $Y := [Y_1, \ldots, Y_n]'$ has the form $A(Y - m_Y) + m_X$ where A is a **row vector**, say $A = [A_1, \ldots, A_n]$. Find A.

Solution. If we let 1 denote the column vector of all ones, then $Y = X\mathbf{1} + V$, $\mathsf{E}[Y] = m_X\mathbf{1}$, $Y - m_Y = (X - m_X)\mathbf{1} + V$, $C_{XY} = \mathsf{E}[(X - m_X)'\{(X - m_X)\mathbf{1} + V\}'] = \sigma_X^2\mathbf{1}'$, and

$$C_Y = \mathsf{E}[\{(X - m_X)\mathbf{1} + V\}\{(X - m_X)\mathbf{1} + V\}'] = \sigma_X^2 \mathbf{1}\mathbf{1}' + \sigma_V^2 I.$$

Since C_Y is positive definite, $A = C_Y^{-1}C_{XY}$. However, an analysis of the equation $AC_Y = C_{XY}$ in component form (see below) shows that all the components of the row vector A have to be the same, and their common value is $\sigma_X^2 / [n\sigma_X^2 + \sigma_V^2]$.

Alternative Solution. Fortunately, the component form of $AC_Y = C_{XY}$ is easy to obtain without introducing 1. First note that since $E[Y_i] = m_X$, we have $Y_i - E[Y_i] = (X + V_i) - m_X = (X - m_X) + V_i$. Hence,

$$(C_Y)_{ij} = \mathsf{E}[\{(X - m_X) + V_i\}\{(X - m_X) + V_j\}] = \sigma_X^2 + \sigma_V^2 \delta_{ij}.$$

Next,

$$(C_{XY})_j = \mathsf{E}[(X - m_X)\{(X - m_X) + V_j\}] = \sigma_X^2$$

Then the component form of $AC_Y = C_{XY}$ is $(AC_Y)_j = (C_{XY})_j$. The left-hand side is

$$\sum_{i=1}^n A_i(C_Y)_{ij} = \sum_{i=1}^n A_i(\sigma_X^2 + \sigma_V^2 \delta_{ij}) = \left(\sum_{i=1}^n A_i\right)\sigma_X^2 + A_j\sigma_V^2.$$

Now suppose we have solved

$$\left(\sum_{i=1}^n A_i\right)\sigma_X^2 + A_j\sigma_V^2 = \sigma_X^2, \quad j = 1, \dots, n$$

Putting $s := \sum_{i=1}^{n} A_i$ the above equations become $s\sigma_X^2 + A_j\sigma_V^2 = \sigma_X^2$, or $A_j = \sigma_X^2/[s\sigma_X^2 + \sigma_V^2]$. In other words, if there is a solution, the A_j must all be the same, say $A_j = a$. Then the above display becomes $na\sigma_X^2 + a\sigma_V^2 = \sigma_X^2$, and it follows that $a = \sigma_X^2/[n\sigma_X^2 + \sigma_V^2]$.

We can now write the linear MMSE estimate as

$$A(Y - m_Y) + m_X = AY + (m_X - Am_Y) = \begin{bmatrix} a \cdots a \end{bmatrix} Y + m_X - am_Y$$
$$= a \sum_{i=1}^n Y_i + (1 - na)m_X$$
$$= \frac{\sigma_X^2}{n\sigma_X^2 + \sigma_V^2} \sum_{i=1}^n Y_i + \frac{\sigma_V^2}{n\sigma_X^2 + \sigma_V^2}$$

For large *n*, the estimate is approximately equal to the sample mean. This can be seen by writing

$$A(Y - m_Y) + m_X = \frac{n\sigma_X^2}{\underbrace{n\sigma_X^2 + \sigma_V^2}_{\approx 1 \text{ for large } n}} \cdot \frac{1}{n} \sum_{i=1}^n Y_i + \underbrace{\frac{\sigma_V^2}{n\sigma_X^2 + \sigma_V^2}}_{\approx 0 \text{ for large } n}$$
$$\approx \frac{1}{n} \sum_{i=1}^n Y_i.$$