ECE 730, Lec. 1
 Exam 1
 Monday, 21 Oct. 2019
 4:14 pm - 5:45 pm
 2540 EH

100 Points

Justify your answers! Be precise!

Closed Book
Closed Notes
No Calculators

You may bring one sheet of 8.5×11 paper with notes written on both sides.

PART 1 - Straightforward Application of Tools We've Studied

1. [20 pts.] Let $X \sim \operatorname{gamma}(p, 1)$, and suppose that given $X=x, Y$ is conditionally $\exp (x)$. Also assume that given $X=x$ and $Y=y, Z$ is conditionally $N\left(0, y^{2}\right)$. Find $\mathrm{E}\left[X^{4} Y Z^{2}\right]$.
Solution. Using the law of total probability,

$$
\begin{aligned}
\mathrm{E}\left[X^{4} Y Z^{2}\right] & =\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{E}\left[X^{4} Y Z^{2} \mid Y=y, X=x\right] f_{X Y}(x, y) d y d x \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{E}\left[x^{4} y Z^{2} \mid Y=y, X=x\right] f_{X Y}(x, y) d y d x, \quad \text { by substitution, } \\
& =\int_{0}^{\infty} \int_{0}^{\infty} x^{4} y \underbrace{\mathrm{E}\left[Z^{2} \mid Y=y, X=x\right]}_{=y^{2}} f_{X Y}(x, y) d y d x, \quad \text { since } 2 \text { nd moment of } N\left(0, \sigma^{2}\right) \text { is } \sigma^{2}, \\
& =\mathrm{E}\left[X^{4} Y^{3}\right] \\
& =\int_{0}^{\infty} \mathrm{E}\left[X^{4} Y^{3} \mid X=x\right] f_{X}(x) d x, \quad \text { by the law of total probability, } \\
& =\int_{0}^{\infty} \mathrm{E}\left[x^{4} Y^{3} \mid X=x\right] f_{X}(x) d x, \quad \text { by substitution, } \\
& =\int_{0}^{\infty} x^{4} \underbrace{\mathrm{E}\left[Y^{3} \mid X=x\right]}_{=3!/ x^{3}} f_{X}(x) d x, \quad \text { since } n \text {th moment of } \exp (\lambda) \text { is } n!/ \lambda^{n}, \\
& =\int_{0}^{\infty} 6 x f_{X}(x) d x \\
& =6 \mathrm{E}[X]=6 p, \quad \text { since first moment of gamma }(p, \lambda) \text { is } \Gamma(1+p) /[\lambda \Gamma(p)]=p / \lambda .
\end{aligned}
$$

2. [20 pts.] A new bridge has 4 cables. Let X_{i} denote the force on the i th cable. A cable will fail if the force on it exceeds t. If at most one cable fails, the bridge will remain standing. ${ }^{1}$
(a) Write an expression for the event that the bridge remains standing.
(b) Assuming the X_{i} are i.i.d. $\exp (\lambda)$ random variables, find a formula for the probability that the bridge remains standing.

Solution.

(a) The event that the bridge remains standing can be expressed as

$$
R:=\bigcup_{k=1}^{4}\left(\bigcap_{j \neq k}\left\{X_{j} \leq t\right\}\right)
$$

However, since the 4 events being "unioned" are not pairwise disjoint, it is more convenient to write R as the union of 5 pairwise disjoint events,

$$
\begin{aligned}
R= & \bigcup_{i=1}^{4}\left[\left\{X_{i}>t\right\} \cap\left(\bigcap_{j \neq i}\left\{X_{j} \leq t\right\}\right)\right] \\
& \cup\left(\left\{X_{1} \leq t\right\} \cap\left\{X_{2} \leq t\right\} \cap\left\{X_{3} \leq t\right\} \cap\left\{X_{4} \leq t\right\}\right) .
\end{aligned}
$$

(b) The corresponding probability is the sum of the probabilities of the 5 disjoint events:

$$
\begin{aligned}
\mathrm{P}(R) & =4 e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{3}+\left(1-e^{-\lambda t}\right)^{4} \\
& =\left(1-e^{-\lambda t}\right)^{3}\left[4 e^{-\lambda t}+\left(1-e^{-\lambda t}\right)\right] \\
& =\left(1-e^{-\lambda t}\right)^{3}\left(1+3 e^{-\lambda t}\right) .
\end{aligned}
$$

[^0]3. [20 pts.] Suppose $Z=X+Y$, where X and Y are independent $\exp (\lambda)$ random variables. Find a formula for the conditional density $f_{Y \mid Z}(y \mid z)$ and specify the range of values of y and z where your density positive.
Solution. Begin by writing
$$
f_{Y \mid Z}(y \mid z)=\frac{f_{Y Z}(y, z)}{f_{Z}(z)}=\frac{f_{Z \mid Y}(z \mid y) f_{Y}(y)}{f_{Z}(z)} .
$$

Since Z is the sum of i.i.d. $\exp (\lambda)$ random variables, we know from Problem 4.55(c) that Z is $\operatorname{Erlang}(2, \lambda)$, which means that $f_{Z}(z)=\lambda(\lambda z) e^{-\lambda z}$ for $z \geq 0$. Next, we find $f_{Z \mid Y}(z \mid y)$ using substitution and independence. Write

$$
\begin{aligned}
F_{Z \mid Y}(z \mid y)=\mathrm{P}(Z \leq z \mid Y=y)=\mathrm{P}(X+Y \leq z \mid Y=y) & =\mathrm{P}(X+y \leq z \mid Y=y) \\
& =\mathrm{P}(X \leq z-y \mid Y=y) \\
& =\mathrm{P}(X \leq z-y)=F_{X}(z-y)
\end{aligned}
$$

It follows that $f_{Z \mid Y}(z \mid y)=f_{X}(z-y)$. Putting this all together, we have

$$
f_{Y \mid Z}(y \mid z)=\frac{f_{X}(z-y) f_{Y}(y)}{f_{Z}(z)}=\frac{\lambda e^{-\lambda(z-y)} \cdot \lambda e^{-\lambda y}}{\lambda(\lambda z) e^{-\lambda z}}=\frac{1}{z}, \quad 0 \leq y \leq z, \text { and } z>0
$$

where the bounds on y come from the facts that $f_{X}(z-y)=0$ for $z-y \leq 0, f_{Y}(y)=0$ for $y \leq 0$, and $f_{Z}(z)=0$ for $z \leq 0$. Notice that $f_{Y \mid Z}(\cdot \mid z) \sim$ uniform $[0, z]$, and for future reference, $\mathrm{E}[Y \mid Z=z]=z / 2$. How does this compare with the linear MMSE estimator of Y based on Z ?

PART 2 - More Abstract

4. [20 pts.] Let u_{1}, \ldots, u_{n} be an orthonormal basis for \mathbb{R}^{n}, and let Z be a zero mean random variable with variance σ^{2}. Put $X:=Z u_{1}$. Find the "ingredients" of the Karhunen-Loève expansion of the random vector X; i.e., find a diagonal matrix Λ and a matrix P such $P^{\prime} \operatorname{cov}(X) P=\Lambda$ and $P^{\prime} P=I$. Justify your answer.
Solution. First observe that $\operatorname{cov}(X)=\mathrm{E}\left[X X^{\prime}\right]=\mathrm{E}\left[Z u_{1} u_{1}^{\prime} Z^{\prime}=\mathrm{E}\left[Z^{2}\right] u_{1} u_{1}^{\prime}=\sigma^{2} u_{1} u_{1}^{\prime}\right.$. In the diagonalization of a symmetric matrix $C=P \Lambda P^{\prime}$, if we let p_{k} denote the k th column of P, then we can also write

$$
C=\sum_{k=1}^{n} \lambda_{k} p_{k} p_{k}^{\prime}
$$

With this observation, the problem can be solved with $\Lambda=\operatorname{diag}\left(\sigma^{2}, 0, \ldots, 0\right)$ and $P=\left[u_{1}|\cdots| u_{n}\right]$. Alternative Solution. We begin with $\operatorname{cov}(X)=\sigma^{2} u_{1} u_{1}^{\prime}$. Since we know that the columns of P must be orthonormal, this suggests that we take P to be the matrix with columns u_{1}, \ldots, u_{n}, and observe that $u_{1}^{\prime} P=[1,0, \ldots, 0]$. Then

$$
P^{\prime} \operatorname{cov}(X) P=\sigma^{2} P^{\prime} u_{1} u_{1}^{\prime} P=\sigma^{2}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & 0 & & \\
\vdots & & \ddots & \\
0 & 0 & & 0
\end{array}\right]=: \Lambda .
$$

Since $\operatorname{cov}(X), P$, and Λ satisfy the required relationships, it follows that $Y=P^{\prime} X=P^{\prime} Z u_{1}=$ $Z P^{\prime} u_{1}=[Z, 0, \ldots, 0]^{\prime}$; i.e., $Y_{1}=Z$ and $Y_{i}=0$ for $i=2, \ldots, n$. We also have $P Y=Z u_{1}=X$. In other words, X was given in the form of the Karhunen-Loève expansion.
5. [20 pts.] Consider the problem of estimating a random variable X based on repeated noisy measurements $Y_{i}=X+V_{i}$. Suppose that X, V_{1}, \ldots, V_{n} are uncorrelated random variables, with the V_{i} all having mean zero and variance σ_{V}^{2}, and with X having mean m_{X} and variance σ_{X}^{2}. Since X is a scalar, the linear MMSE estimate of X based on the vector $Y:=\left[Y_{1}, \ldots, Y_{n}\right]^{\prime}$ has the form $A\left(Y-m_{Y}\right)+m_{X}$ where A is a row vector, say $A=\left[A_{1}, \ldots, A_{n}\right]$. Find A.
Solution. If we let $\mathbf{1}$ denote the column vector of all ones, then $Y=X \mathbf{1}+V, \mathrm{E}[Y]=m_{X} \mathbf{1}$, $Y-m_{Y}=\left(X-m_{X}\right) \mathbf{1}+V, C_{X Y}=\mathrm{E}\left[\left(X-m_{X}\right)^{\prime}\left\{\left(X-m_{X}\right) \mathbf{1}+V\right\}^{\prime}\right]=\sigma_{X}^{2} \mathbf{1}^{\prime}$, and

$$
C_{Y}=\mathrm{E}\left[\left\{\left(X-m_{X}\right) \mathbf{1}+V\right\}\left\{\left(X-m_{X}\right) \mathbf{1}+V\right\}^{\prime}\right]=\sigma_{X}^{2} \mathbf{1 1}^{\prime}+\sigma_{V}^{2} I .
$$

Since C_{Y} is positive definite, $A=C_{Y}^{-1} C_{X Y}$. However, an analysis of the equation $A C_{Y}=C_{X Y}$ in component form (see below) shows that all the components of the row vector A have to be the same, and their common value is $\sigma_{X}^{2} /\left[n \sigma_{X}^{2}+\sigma_{V}^{2}\right]$.
Alternative Solution. Fortunately, the component form of $A C_{Y}=C_{X Y}$ is easy to obtain without introducing 1. First note that since $\mathrm{E}\left[Y_{i}\right]=m_{X}$, we have $Y_{i}-\mathrm{E}\left[Y_{i}\right]=\left(X+V_{i}\right)-m_{X}=\left(X-m_{X}\right)+$ V_{i}. Hence,

$$
\left(C_{Y}\right)_{i j}=\mathrm{E}\left[\left\{\left(X-m_{X}\right)+V_{i}\right\}\left\{\left(X-m_{X}\right)+V_{j}\right\}\right]=\sigma_{X}^{2}+\sigma_{V}^{2} \delta_{i j}
$$

Next,

$$
\left(C_{X Y}\right)_{j}=\mathrm{E}\left[\left(X-m_{X}\right)\left\{\left(X-m_{X}\right)+V_{j}\right\}\right]=\sigma_{X}^{2}
$$

Then the component form of $A C_{Y}=C_{X Y}$ is $\left(A C_{Y}\right)_{j}=\left(C_{X Y}\right)_{j}$. The left-hand side is

$$
\sum_{i=1}^{n} A_{i}\left(C_{Y}\right)_{i j}=\sum_{i=1}^{n} A_{i}\left(\sigma_{X}^{2}+\sigma_{V}^{2} \delta_{i j}\right)=\left(\sum_{i=1}^{n} A_{i}\right) \sigma_{X}^{2}+A_{j} \sigma_{V}^{2}
$$

Now suppose we have solved

$$
\left(\sum_{i=1}^{n} A_{i}\right) \sigma_{X}^{2}+A_{j} \sigma_{V}^{2}=\sigma_{X}^{2}, \quad j=1, \ldots, n
$$

Putting $s:=\sum_{i=1}^{n} A_{i}$ the above equations become $s \sigma_{X}^{2}+A_{j} \sigma_{V}^{2}=\sigma_{X}^{2}$, or $A_{j}=\sigma_{X}^{2} /\left[s \sigma_{X}^{2}+\sigma_{V}^{2}\right]$. In other words, if there is a solution, the A_{j} must all be the same, say $A_{j}=a$. Then the above display becomes $n a \sigma_{X}^{2}+a \sigma_{V}^{2}=\sigma_{X}^{2}$, and it follows that $a=\sigma_{X}^{2} /\left[n \sigma_{X}^{2}+\sigma_{V}^{2}\right]$.

We can now write the linear MMSE estimate as

$$
\begin{aligned}
A\left(Y-m_{Y}\right)+m_{X}=A Y+\left(m_{X}-A m_{Y}\right) & =[a \cdots a] Y+m_{X}-a m_{Y} \\
& =a \sum_{i=1}^{n} Y_{i}+(1-n a) m_{X} \\
& =\frac{\sigma_{X}^{2}}{n \sigma_{X}^{2}+\sigma_{V}^{2}} \sum_{i=1}^{n} Y_{i}+\frac{\sigma_{V}^{2}}{n \sigma_{X}^{2}+\sigma_{V}^{2}} .
\end{aligned}
$$

For large n, the estimate is approximately equal to the sample mean. This can be seen by writing

$$
\begin{aligned}
A\left(Y-m_{Y}\right)+m_{X} & =\underbrace{\frac{n \sigma_{X}^{2}}{n \sigma_{X}^{2}+\sigma_{V}^{2}}}_{\approx 1 \text { for large } n} \cdot \frac{1}{n} \sum_{i=1}^{n} Y_{i}+\underbrace{\frac{\sigma_{V}^{2}}{n \sigma_{X}^{2}+\sigma_{V}^{2}}}_{\approx 0 \text { for large } n} \\
& \approx \frac{1}{n} \sum_{i=1}^{n} Y_{i} .
\end{aligned}
$$

[^0]: ${ }^{1}$ This was not the case for the Morandi bridge, which collapsed when the first cable stay failed. See https://www.pbs.org/wgbh/nova/video/why-bridges-collapse/?linkId=74764116

