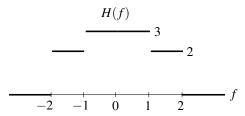
ECE 730, Lec. 1 Final Exam Monday, 16 Dec. 2019 12:25 pm – 2:25 pm 2540 EH

100 Points

Justify your answers!

Be precise!


Closed Book

Closed Notes

No Calculators

You may bring two sheets of 8.5×11 paper with notes written on both sides.

- 1. [15 pts] Suppose $X \sim \exp(\lambda)$ and $Y \sim \exp(\mu)$, where X and Y are independent. Compute $E[(X+Y)^2]$.
- 2. [15 pts] White noise with power spectral density $S_X(f) = N_0/2$ is applied to the lowpass filter H(f) shown below.

If the system output is denoted by Y_t , find the expected instantaneous output power $E[Y_t^2]$.

- 3. [15 pts] Let X_n converge in probability to X, where $X \sim \text{Laplace}(\lambda)$.
 - (a) Determine whether or not

 $cos(X_n)$ converges in probability to cos(X).

Justify your answer.

(b) Determine whether or not

$$\lim_{n\to\infty}\mathsf{E}[\cos(X_n)]=\mathsf{E}[\cos(X)].$$

Justify your answer.

- (c) Evaluate $E[\cos(X)]$. *Hint:* Don't compute any integrals.
- 4. [15 pts.] Give an example of a Gaussian random vector [X, Y]' that does *not* have a joint density, but for which at least one component does have a marginal density.
- 5. [20 pts.] Let $U \sim \text{uniform}[-2, 2]$, and put $X_n := (4 U^2)^n$. Let $G := \{X_n \to 0\}$.
 - (a) Compute $\mathsf{P}(G)$.
 - (b) Does X_n converge almost surely to 0? Justify your answer.
- 6. [20 pts.] Suppose X_n converges in probability to X. Suppose also that B is a positive, finite constant such that $|X_n| \le B$ and $|X| \le B$. Determine whether or not X_n converges in mean of order 2 to X. Justify your answer.