Probabilistic Models

Let \mathbf{X} and \mathbf{Y} be countable sets. We denote n-tuples $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{X}^{n}$ and $\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{Y}^{n}$ by x^{n} and y^{n}, respectively. For $k=1,2, \ldots$, let X_{k} and Y_{k} be \mathbf{X} - and \mathbf{Y}-valued random variables, respectively. Then for $n \geq 2$, we can always write

$$
\begin{aligned}
\wp\left(Y^{n}=y^{n}, X^{n}=x^{n}\right)= & \wp\left(Y_{n}=y_{n} \mid Y^{n-1}=y^{n-1}, X^{n}=x^{n}\right) \\
& . \wp\left(X_{n}=x_{n} \mid Y^{n-1}=y^{n-1}, X^{n-1}=x^{n-1}\right) \\
& \cdot \wp\left(Y^{n-1}=y^{n-1}, X^{n-1}=x^{n-1}\right) .
\end{aligned}
$$

Conversely, let $a_{1}(\cdot)$ be a probability mass function (PMF) on \mathbf{X}, and for each $x \in \mathbf{X}$, let $b_{1}(\cdot \mid x)$ be a PMF on Y. Similarly, for $n \geq 2$, let $a_{n}\left(\cdot \mid y^{n-1}, x^{n-1}\right)$ be a PMF on \mathbf{X}, and let $b_{n}\left(\cdot \mid y^{n-1}, x^{n}\right)$ be a PMF on \mathbf{Y}. Then a probability space $(\Omega, \mathcal{F}, \wp)$ and random variables X_{k} and Y_{k} exist ${ }^{1}$ such that

$$
\wp\left(X_{1}=x\right)=a_{1}(x) \quad \text { and } \quad \wp\left(Y_{1}=y \mid X_{1}=x\right)=b_{1}(y \mid x)
$$

and for $n \geq 2$,

$$
\begin{aligned}
\wp\left(Y_{n}=y_{n} \mid Y^{n-1}=y^{n-1}, X^{n}=x^{n}\right) & =b_{n}\left(y_{n} \mid y^{n-1}, x^{n}\right) \\
\wp\left(X_{n}=x_{n} \mid Y^{n-1}=y^{n-1}, X^{n-1}=x^{n-1}\right) & =a_{n}\left(x_{n} \mid y^{n-1}, x^{n-1}\right) .
\end{aligned}
$$

One is often interested in computing quantities such as $\wp\left(X_{n}=x_{n} \mid Y^{n}=y^{n}\right)$. To this end, let

$$
r_{n}\left(x_{n}, y^{n}\right):=\wp\left(X_{n}=x_{n}, Y^{n}=y^{n}\right)
$$

and note that

$$
\wp\left(X_{n}=x_{n} \mid Y^{n}=y^{n}\right)=r_{n}\left(x_{n}, y^{n}\right) / \sum_{x \in \mathbf{X}} r_{n}\left(x, y^{n}\right) .
$$

Clearly, $r_{1}(x, y)=a_{1}(x) b_{1}(y \mid x)$. Now, suppose that for $n \geq 2, b_{n}\left(y_{n} \mid y^{n-1}, x^{n}\right)=\beta_{n}\left(y_{n} \mid y^{n-1}, x_{n}\right)$ and $a_{n}\left(x_{n} \mid y^{n-1}, x^{n-1}\right)=\alpha_{n}\left(x_{n} \mid y^{n-1}, x_{n-1}\right)$ for some functions β_{n} and α_{n}. Under these Markovtype assumptions, it is a trivial calculation to show that

$$
r_{n}\left(x_{n}, y^{n}\right)=\beta_{n}\left(y_{n} \mid y^{n-1}, x_{n}\right) \sum_{x \in \mathbf{X}} \alpha_{n}\left(x_{n} \mid y^{n-1}, x\right) r_{n-1}\left(x, y^{n-1}\right), \quad n \geq 2
$$

[^0]
[^0]: ${ }^{1}$ If the sequence of random variables is not finite, we need to apply to Kolmogorov's Theorem.

