Probabilistic Models

Let **X** and **Y** be countable sets. We denote *n*-tuples $(x_1, \ldots, x_n) \in \mathbf{X}^n$ and $(y_1, \ldots, y_n) \in \mathbf{Y}^n$ by x^n and y^n , respectively. For $k = 1, 2, \ldots$, let X_k and Y_k be **X**- and **Y**-valued random variables, respectively. Then for $n \ge 2$, we can always write

$$\begin{split} \wp(Y^n = y^n, X^n = x^n) &= \wp(Y_n = y_n | Y^{n-1} = y^{n-1}, X^n = x^n) \\ &\quad \cdot \wp(X_n = x_n | Y^{n-1} = y^{n-1}, X^{n-1} = x^{n-1}) \\ &\quad \cdot \wp(Y^{n-1} = y^{n-1}, X^{n-1} = x^{n-1}). \end{split}$$

Conversely, let $a_1(\cdot)$ be a probability mass function (PMF) on \mathbf{X} , and for each $x \in \mathbf{X}$, let $b_1(\cdot|x)$ be a PMF on \mathbf{Y} . Similarly, for $n \geq 2$, let $a_n(\cdot|y^{n-1}, x^{n-1})$ be a PMF on \mathbf{X} , and let $b_n(\cdot|y^{n-1}, x^n)$ be a PMF on \mathbf{Y} . Then a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and random variables X_k and Y_k exist¹ such that

$$\mathscr{P}(X_1 = x) = a_1(x)$$
 and $\mathscr{P}(Y_1 = y | X_1 = x) = b_1(y | x),$

and for $n \geq 2$,

$$\begin{split} \wp(Y_n &= y_n | Y^{n-1} = y^{n-1}, X^n = x^n) &= b_n(y_n | y^{n-1}, x^n) \\ \wp(X_n &= x_n | Y^{n-1} = y^{n-1}, X^{n-1} = x^{n-1}) &= a_n(x_n | y^{n-1}, x^{n-1}). \end{split}$$

One is often interested in computing quantities such as $\mathcal{P}(X_n = x_n | Y^n = y^n)$. To this end, let

$$r_n(x_n, y^n) := \mathcal{P}(X_n = x_n, Y^n = y^n),$$

and note that

$$\mathscr{P}(X_n = x_n | Y^n = y^n) = r_n(x_n, y^n) / \sum_{x \in \mathbf{X}} r_n(x, y^n).$$

Clearly, $r_1(x, y) = a_1(x) b_1(y|x)$. Now, suppose that for $n \ge 2$, $b_n(y_n|y^{n-1}, x^n) = \beta_n(y_n|y^{n-1}, x_n)$ and $a_n(x_n|y^{n-1}, x^{n-1}) = \alpha_n(x_n|y^{n-1}, x_{n-1})$ for some functions β_n and α_n . Under these Markovtype assumptions, it is a trivial calculation to show that

$$r_n(x_n, y^n) = \beta_n(y_n | y^{n-1}, x_n) \sum_{x \in \mathbf{X}} \alpha_n(x_n | y^{n-1}, x) r_{n-1}(x, y^{n-1}), \quad n \ge 2.$$

¹If the sequence of random variables is not finite, we need to apply to Kolmogorov's Theorem.