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Introduction

Signal synthesis and recovery is all about the situation illus-
trated in Figure 1, when the system and the output are given, and
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Figure 1. A typical system.

the goal is to find a corresponding input. In thesignal synthe-
sis problem, the output is a design specification, and the goal
is to find an input that causes the system to generate the desired
output. In thesignal recovery problem, the output is measure-
ment data, and the goal is to find the input that generated it. In
practice, there may be many inputs that can generate the same
output; hence, additional constraints must be imposed on the
input to select a particular solution.

We can pose the situation in Figure 1 somewhat more for-
mally as shown in Figure 2, which suggests the equation
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Figure 2. A mathematically defined system.

y = f (x). (1)

Equation (1) immediately raises several mathematical questions.
First, what kind of object isx? We answer this by requiring that
x ∈ X , whereX is some set of admissible system inputs; i.e.,
admissible arguments forf . Second, what kind of object isy?
Certainly, y must be the same kind of object asf (x) for any
x ∈ X . In general, we require that for allx ∈ X , f (x) ∈ Y for
some fixed setY . Note that it isnot required that for ally ∈ Y ,
there exist anx ∈ X with f (x) = y.

In many problems, we have a mathematical model in which
a measurementy0 ∈ Y is equal tof (x0) for somex0 ∈ X . How-
ever, due to noise or modeling errors, whenx0 is applied to the
system, the output that is actually measured is

y1 6= y0. (2)

Somehow, based on the observationy1, we want to findx0.
There are two situations to consider. First suppose there isan
x1 such thaty1 = f (x1). Then we would like to say something
like, “if y1 is close toy0, thenx1 will be close tox0.” Second,
suppose that there is nox1 ∈ X with y1 = f (x1). In this case, we
could consider the problem

min
x∈X

distance
(

y1, f (x)
)

. (3)

What do “close” and “distance” mean? In general, sincex and
y may be very different kinds of objects, we may need differ-
ent notions of closeness or distance. In order to examine these
questions precisely, we must learn a bit aboutmetric spaces.

In many signal processing applications, the setsX andY are
vector spaces. Among other things, this means that there is a

notion of addition for objects inX and a notion of addition for
objects inY . Hence, we can employ additive noise models. For
example, instead of (2), we can writey1 = y0 + ∆y for some
nonzero∆y. Distance in vector spaces is often measured by a
norm. In this case, every vector has a notion of size associated
with it. This is usually denoted by‖x‖. The distance between
two vectorsx0 andx1 is then taken to be‖x0− x1‖. Since dif-
ferent spaces have different norms, for emphasis we sometimes
write ‖x‖X for x ∈ X and‖y‖Y for y ∈ Y .

Another advantage of havingX andY be vector spaces is that
it makes sense to talk about linear functions (usually called lin-
ear transformations or linear operators). In this case, we of-
ten denote the function (transformation/operator) byA; we write
y = Ax instead ofy = f (x). WhenY is a normed vector space,
(3) becomes

min
x∈X

‖y1−Ax‖Y . (4)

As x runs overX , Ax runs over

rangeA := {Ax : x ∈ X}.

Hence, we are trying to find a point in rangeA that is closest
to y1. This is theprojection problem. SinceA is linear, its
range is a subspace. Wheny1 is a point in the plane and the
subspace is a line through the origin, the projection problem
is straightforward, as shown in Figure 3. The point we need
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Figure 3. A projection problem in the plane.

has the property that the error vector is perpendicular (orthog-
onal) to every vector in the subspace. How can we generalize
this idea wheny1 is a waveform, e.g., a sine wave, instead of a
point in two-dimensional space? This brings us to the topic of
inner-product spaces. If Y is an inner-product space with in-
ner product denoted by(·, ·), we show later thatx1 achieves the
minimum in (4) if and only if

(y1−Ax1,Ax) = 0, for all x ∈ X .

If in addition X is an inner-product space with inner product
denoted by〈·, ·〉, we show later that the above formula holds if
and only if

〈A∗y1− (A∗A)x1,x〉 = 0, for all x ∈ X ,

whereA∗ is theadjoint of A (defined later). Sincex is arbitrary,
it follows thatx1 satisfies thelinear equation

(A∗A)x1 = A∗y1.

In many cases the solution of this equation can be found. In
particular, ifX is finite dimensional, thenA∗A can be identified
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with a matrix, andA∗y1 is a column vector, andx1 can be found
using MATLAB .

If you have studied linear algebra, you may be familiar with
thediagonalization of matrices and thesingular-value decom-
position (SVD) of matrices. These are fundamental tools for
studying linear operators on finite-dimensional spaces. How-
ever, operators encountered in applications are often defined on
infinite-dimensional spaces. Fortunately, the notions of diago-
nalization and SVD can be generalized to infinite-dimensional
settings.

Formula (4) is an example of an optimization problem. Not
all such problems can be solved so easily. To minimize a real-
valued function ofx, which we now callf , what should we do?
If x is a real number or an element ofR

d , we can differentiate.
What should we do ifx is a waveform? How does one differen-
tiate with respect to a waveform? Later we generalize the notion
of derivative to functions defined on infinite-dimensional spaces
by introducing the Fŕechet and Ĝateaux derivatives. Since set-
ting these derivatives equal to zero means solvingf ′(x) = 0, we
have a special case of (1). It’s all about solving equations.. . .
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