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Introduction notion of addition for objects iiX and a notion of addition for
objects inY. Hence, we can employ additive noise models. For
example, instead of (2), we can wrije = yo + Ay for some
<"fﬁonzeroAy. Distance in vector spaces is often measured by a

Signal synthesis and recovery is all about the situatios-ill
trated in Figure 1, when the system and the output are giveh,

) norm. In this case, every vector has a notion of size associated
lnp‘“ output with it. This is usually denoted bijx||. The distance between
two vectorsxy andx; is then taken to béixg — x1||. Since dif-
Figure 1. A typical system. ferent spaces have different norms, for emphasis we somgtim
write ||x||x for x € X and||y|ly fory €Y.
the goal is to find a corresponding input. In thgnal synthe- Another advantage of havingandY be vector spaces is that

sis problem, the output is a design specification, and the goilmakes sense to talk about linear functions (usually ddile
is to find an input that causes the system to generate theedes#ar transformations or linear operators). In this case, we of-
output. In thesignal recovery problem, the output is measure- ten denote the function (transformation/operatorpbwe write
ment data, and the goal is to find the input that generated it. y = Ax instead ofy = f(x). WhenY is a normed vector space,
practice, there may be many inputs that can generate the sgB8)decomes
output; hence, additional constraints must be imposed en th min|ly: — Axly. (4)
input to select a particular solution. xeX

We can pose the situation in Figure 1 somewhat more fd\S X runs overX, Axruns over
mally as shown in Figure 2, which suggests the equation rangeA ‘— {Ax: x € X}.

xy Hence, we are trying to find a point in ranfyehat is closest

to y1. This is theprojection problem. SinceA is linear, its
range is a subspace. Whgnis a point in the plane and the
subspace is a line through the origin, the projection proble
is straightforward, as shown in Figure 3. The point we need

Figure 2. A mathematically defined system.

y=f(x). (1)

Equation (1) immediately raises several mathematicaltopres
First, what kind of object ix? We answer this by requiring that
x € X, whereX is some set of admissible system inputs; i.e.,

V1

error vector

admissible arguments fdr. Second, what kind of object i? > subspace
Certainly,y must be the same kind of object &¢x) for any 0 closest point to y

x € X. In general, we require that for alle X, f(x) €Y for

some fixed seY. Note that it isnot required that for alyy € Y, Figure 3. A projection problem in the plane.

there exist ax € X with f(x) =y.

In many problems, we have a mathematical model in whidtas the property that the error vector is perpendicudethfg-
a measuremen €Y is equal tof (xo) for somexg € X. How- onal) to every vector in the subspace. How can we generalize
ever, due to noise or modeling errors, wheris applied to the this idea whery; is a waveform, e.g., a sine wave, instead of a

system, the output that is actually measured is point in two-dimensional space? This brings us to the topic o
inner-product spaces. If Y is an inner-product space with in-
Y1 # Yo (2) ner product denoted by, -), we show later that; achieves the

minimum in (4) if and only if
Somehow, based on the observatipn we want to findxg. inimum in (4) i yi

There are two situations to consider. First suppose theae is (y1—Ax,AX) =0, forallxeX.
x1 such thaty; = f(x;). Then we would like to say something
like, “if y; is close toyo, thenx; will be close toxy.” Second, [f in addition X is an inner-product space with inner product
suppose that there is @ € X with y; = f(x;). In this case, we denoted by-,-), we show later that the above formula holds if
could consider the problem and only if
min distancéys, f (x)). (3) (A'y1— (A"A)xq,x) =0, forallxeX,

What do “close” and “distance” mean? In general, sin@nd yvhereA* is thead] o!nt. ofA (giefined Iate.r). Sinceis arbitrary,
y may be very different kinds of objects, we may need diffe}E follows thatx, satisfies théinear equation
ent notions of closeness or distance. In order to examirsethe (A*A)x; = A'ys.
questions precisely, we must learn a bit abmetric spaces.

In many signal processing applications, the setndY are In many cases the solution of this equation can be found. In
vector spaces. Among other things, this means that there is particular, ifX is finite dimensional, theA*A can be identified



with a matrix, andA*y; is a column vector, angh can be found
using MATLAB.

If you have studied linear algebra, you may be familiar with
thediagonalization of matrices and theingular-value decom-
position (SVD) of matrices. These are fundamental tools for
studying linear operators on finite-dimensional spacesw-Ho
ever, operators encountered in applications are oftenatetin
infinite-dimensional spaces. Fortunately, the notionsiago-
nalization and SVD can be generalized to infinite-dimenrelion
settings.

Formula (4) is an example of an optimization problem. Not
all such problems can be solved so easily. To minimize a real-
valued function of, which we now callf, what should we do?

If xis a real number or an element®f, we can differentiate.
What should we do ik is a waveform? How does one differen-
tiate with respect to a waveform? Later we generalize thienot
of derivative to functions defined on infinite-dimensiorahses
by introducing the Fechet and @teaux derivatives. Since set-
ting these derivatives equal to zero means solitig) = 0, we
have a special case of (1). It's all about solving equatians.
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