
November 14, 2006

if the right-hand side of (2.6) is a good approximation of x(t).
Observe that the subspace spanned by the sinc functions in (2.6)

has dimension

N := N2 −N1 +1 ≈ N2 −N1 = 2WT.

For this reason, the set of waveforms bandlimited to W and of

approximate duration T is said to have 2WT degrees of free-

dom or approximate dimension 2WT .

2.3. Plotting Linear Combinations of Waveforms

Suppose we want to plot

y(t) =
n

∑
j=1

c jx j(t).

In many cases, x j is a scaled shift of some fixed waveform x, say

x j(t) = x
(
s j(t −m j)

)
.

For example, in Problem 2–7, we would take x(t) = et with s j =
β j and m j = 0. In (2.6) we would take x(t) = sinc(t) with s j =
2W and m j = jτ . When the x j have the form of scaled shifts, we

can plot a linear combination at points ti very easily in MATLAB.

Observe that

y(ti) =
n

∑
j=1

c jx
(
s j(ti −m j)

)
, i = 1, . . . ,M,

says that the row vector [y(t1), . . . ,y(tM)] is the product of the

row vector c = [c1, . . . ,cn] and the M × n matrix with i j entry

x
(
s j(ti −m j)

)
. This suggests the MATLAB function lincmb

below to compute the vector [y(t1), . . . ,y(tM)] if the row vector

of coefficients c, the row vector of shifts m, and the row vector

of scale factors s are given. Before listing the function lincmb,

we give several examples of how to use it.

Example. To plot et +2e−t +4e−t/3 on [0,1], use the following
commands

t=linspace(0,1,200);

c = [1 2 4];

s = [1 -1 -1/3];

m = zeros(size(s));

y = lincmb(t,c,’exp’,m,s);

plot(t,y)

to get the graph shown at the top in Figure 2.1. To plot the func-

tions et , e−t , and e−t/3 themselves, replace the last two com-
mand lines with

[y,xmat] = lincmb(t,c,’exp’,m,s);

plot(t,xmat)

The result is shown at the bottom in Figure 2.1.

Example 2.11. We use lincmb to plot the linear combination

y(t) =
9

∑
k=3

e−(t−k)2/2/
√

2π

for t ∈ [0,12]. In addition, we plot the functions e−(t−k)2/2/
√

2π
on the same graph. The first step is to create an M-file with the
desired function:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

6.2

6.4

6.6

6.8

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

Figure 2.1. The linear combination et +2e−t +4e−t/3 (top) and the functions et ,

e−t , and e−t/3 (bottom).

function x = gaussdens(t)

x = exp(-t.ˆ2/2)/sqrt(2*pi);

We then use the following commands:

t=linspace(0,12,200);

m = [3:9];

c = ones(size(m));

[y,xmat] = lincmb(t,c,’gaussdens’,m);

plot(t,y,’--’,t,xmat)

See Figure 2.2. Notice that since the scale factors are all one,

the fifth argument of lincmb can be omitted.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Figure 2.2. Linear combinations of Gaussians (dashed line) and individual

Gaussians (solid lines).

Example 2.12 (Sampling Theorem Interpolation). Suppose

that x is a row vector of samples of a bandlimited function x

that is bandlimited to W . Let tau denote the corresponding row

vector of sampling times. If t is a row vector of reconstruction

times at which we want to compute (2.6), then the following

MATLAB function will produce the required computations.

8

November 14, 2006

function y = smpthm(t,x,tau,W)

%

% Use the sampling theorem to reconstruct

% a bandlimited waveform.

%

% t = ARRAY of reconstruction times

% x = ROW vector of waveform samples

% tau = ROW vector of sampling times

% W = bandwidth of waveform

twoW = 2*W;

sp = tau(2)-tau(1); % sampling period

y = twoW*sp*lincmb(t,x,’sinc’,tau,twoW);

To illustrate its use, we consider the standard Gaussian density,
which is approximately bandlimited to W = 1. The following
commands produced Figure 2.3, in which the samples are indi-
cated by the circles, and the approximate reconstruction is given
by the solid line. The reader can experiment with the parame-
ter Ts. As Ts increases, the reconstruction breaks down. The
reader should also experiment with plotting the reconstruction
outside the interval where the waveform samples are taken. In
this case, the samples and the reconstruction should be plotted
on different graphs.

W = 1; % BW of waveform

fsMin = 2*W; % Nyquist rate

TsMax = 1/fsMin; % Nyquist period

Ts = .5; % Actual sampling period

Tasamp = -5; % Interval to sample

Tbsamp = 5;

n = ceil((Tbsamp-Tasamp)/Ts); % # samples

tsamp = linspace(Tasamp,Tbsamp,n);

Taplot = -3; % Interval to plot results

Tbplot = 3;

x = gaussdens(tsamp); % samples

t = linspace(Taplot,Tbplot,200);

y = smpthm(t,x,tsamp,W); % sampling thm

plot(tsamp,x,’o’,t,y)

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

Figure 2.3. Reconstruction of a Gaussian density using the finite-sum approxi-

mation (2.6) of the sampling-theorem formula.

Here is the function lincmb:

function [y,xmat] = lincmb(t,c,xfun,m,varargin)

%

% Usage: lincmb(t,c,xfun,m)

% or lincmb(t,c,xfun,m,s)

% where if the optional argument s is

% omitted, it is taken to be 1.

%

% Compute

% y(t_i) = \sum_j c_j xfun_j(t_i)

% and

% xmat = matrix with ij element xfun_j(t_i)

% where xfun_j(t_i) = xfun(s_j(t_i-m_j))

%

% t = ARRAY of times at which the

% linear combination will be evaluated.

% c = ROW vector of coefficients of the

% linear combination.

% xfun = STRING containing the name of the

% underlying function to be used.

% m = ROW vector of shifts.

% s = OPTIONAL ROW vector of scale factors.

% WARNING: If length(s)>1, then s and

% m are assumed to have the same length;

% otherwise an ERROR may result.

% y = ARRAY output (same dimension as t)

%

sizt = size(t); % Make t a column vector

lt = prod(sizt);

tt = reshape(t,lt,1);

lm = length(m);

if nargin==4

tmat = repmat(tt,1,lm);

mmat = repmat(m,lt,1);

else

s = varargin{1};

ls = length(s);

if ls==1

tmat = repmat(s(1)*tt,1,lm);

else

tmat = tt*s;

end

mmat = repmat(s.*m,lt,1);

end

xmat = feval(xfun,tmat-mmat);

yloc = xmat*(c.’);

y = reshape(yloc,sizt);

9

November 14, 2006

Remark. The inner product space V in this section is totally

arbitrary. However, if V = C
d is equipped with the standard

Euclidean inner product 〈u,v〉 = vHu, where the superscript H

denotes the complex conjugate transpose, then it is not hard to

see that (6.11) can be expressed as

W
H
W c = W

Hv, (6.16)

where W denotes the d × n matrix whose columns are

w1, . . . ,wn,

W :=
[

w1 · · · wn

]
.

It is easy to see that (6.10) becomes

v̂ = W c = W (W H
W)−1

W
Hv. (6.17)

6.1.1. Approximation of Functions

Let v(t) be a given function to be approximated using well-

known functions w1(t), . . . ,wn(t). One approach is to seek co-

efficients c1, . . . ,cn that minimize

∥∥∥∥v−
n

∑
j=1

c jw j

∥∥∥∥
2

=
∫ ∣∣∣∣v(t)−

n

∑
j=1

c jw j(t)

∣∣∣∣
2

dt.

Let W := span{w1, . . . ,wn}. Then the optimal coefficients are

given by (6.11), where

Gi j =
∫

w j(t)wi(t)dt and bi =
∫

v(t)wi(t)dt. (6.18)

Example 6.12 (Least Squares Polynomial Approximation).

In Example 5.10 we considered the uniform approximation of

continuous functions on a finite interval [a,b] by polynomials.

In that example, the distance between two continuous functions,

say v and u, was measured by the uniform norm,

‖v−u‖∞ := max
a≤t≤b

|v(t)−u(t)|.

In the next two problems we measure distance in the least

squares sense,

‖v−u‖2 :=

(∫ b

a
|v(t)−u(t)|2 dt

)1/2

.

Now observe that

‖v−u‖2
2 ≤

∫ b

a
‖v−u‖2

∞ dt = ‖v−u‖2
∞(b−a).

Let v̂2 denote the best approximation of v in the least squares

sense, and let v̂∞ denote the best approximation of v in the uni-

form norm. Then we have the following relationships:

‖v− v̂2‖2 ≤ ‖v− v̂∞‖2

≤ ‖v− v̂∞‖∞

√
b−a

≤ ‖v− v̂2‖∞

√
b−a.

Problem 6–17. You wish to approximate the function v(t) = t3

for 0 ≤ t ≤ 1 using a polynomial of degree 1; i.e., v̂(t) = c1 +
c2t. Find numerical values of c1 and c2 that minimize the mean

squared error, ∫ 1

0

∣∣v(t)− v̂(t)
∣∣2

dt.

Problem 6–18. Find the best approximation (in the sense of

mean squared error) of v(t) = t2,0 ≤ t ≤ 1, by a polynomial

v̂(t) of degree at most one that also satisfies
∫ 1

0 v̂(t)dt = 0.

If v(t) is not given theoretically, or if the integrals for

bi above cannot be computed numerically, then the forego-

ing approach is not possible. However, suppose samples

v(t1), . . . ,v(tm) are available. Put

v := [v(t1), . . . ,v(tm)]′ and w j := [w j(t1), . . . ,w j(tm)]′.

Using the standard inner product on R
n or C

n and the corre-

sponding Euclidean distance, we have

∥∥∥∥v−
n

∑
j=1

c jw j

∥∥∥∥
2

=
m

∑
i=1

∣∣∣∣v(ti)−
n

∑
j=1

c jw j(ti)

∣∣∣∣
2

. (6.19)

If we put W := [w1, . . . ,wn], then in Gc = b, G = W HW ,

and b = W Hv. Note that once we have found the coefficients

c1, . . . ,cn, the approximation

v̂(t) =
n

∑
j=1

c jw j(t) (6.20)

can be evaluated for all t for which the w j(t) are defined, not

just the sample times t1, . . . ,tm. Hence, for ti < t < ti+1, v̂(t) can

serve as an approximation of v(t).

Remark. Whether we solve Gc = b when G and b are given by

(6.18) or by (6.19), to plot the projection, we must plot the wave-

form given by (6.20). If the w j are scaled and shifted versions

of common waveform, say w j(t) = w(s j(t −m j)), then we can

use the MATLAB function lincmb discussed in Section 2.3. In

fact, in the case of (6.19), the matrix W is provided by lincmb.

Remark. Suppose that the w j are linearly independent and that

m = n. Then the w j are a basis for n-dimensional Euclidean

space, and the minimum value of (6.19) is zero when the c j are

the unique coefficients of the representation of v in this basis. In

other words, the approximation v̂(t) satisfies v̂(ti) = v(ti) for all

i; i.e., the approximation interpolates the data.

Application (Polynomial Approximation). We can compute

polynomial approximations in the sense of (6.19) very easily

using MATLAB. For example, suppose we want to approximate

v(t) = sin(2πt) for t ∈ [0,1] using a polynomial of degree 4.

This corresponds to projecting v onto the 5-dimensional space

spanned by 1, t, t2, t3, t4. Use the following commands.

t = linspace(0,1,30);

v = sin(2*pi*t);

27

