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6.1.1. Approximation of Functions

Let v(t) be a given function to be approximated using well-

known functions w1(t), . . . ,wn(t). One approach is to seek co-

efficients c1, . . . ,cn that minimize

∥∥∥∥v−
n

∑
j=1

c jw j

∥∥∥∥
2

=
∫ ∣∣∣∣v(t)−

n

∑
j=1

c jw j(t)

∣∣∣∣
2

dt.

Let W := span{w1, . . . ,wn}. Then optimal coefficients are given

by (6.11), where

Gi j =
∫

w j(t)wi(t)dt and bi =
∫

v(t)wi(t)dt.

Problem 6–16. You wish to approximate the function v(t) = t3

for 0 ≤ t ≤ 1 using a polynomial of degree 1; i.e., v̂(t) = c1 +
c2t. Find numerical values of c1 and c2 that minimize the mean

squared error, ∫ 1

0

∣∣v(t)− v̂(t)
∣∣2

dt.

Problem 6–17. Find the best approximation (in the sense of

mean squared error) of v(t) = t2,0 ≤ t ≤ 1, by a polynomial

v̂(t) of degree at most one that also satisfies
∫ 1

0 v̂(t)dt = 0.

If v(t) is not given theoretically, or if the integrals for

bi above cannot be computed numerically, then the forego-

ing approach is not possible. However, suppose samples

v(t1), . . . ,v(tm) are available. Put

v := [v(t1), . . . ,v(tm)]′ and w j := [w j(t1), . . . ,w j(tm)]′.

Using the standard inner product on R
n or C

n and the corre-

sponding Euclidean distance, we have

∥∥∥∥v−
n

∑
j=1

c jw j

∥∥∥∥
2

=
m

∑
i=1

∣∣∣∣v(ti)−
n

∑
j=1

c jw j(ti)

∣∣∣∣
2

. (6.18)

If we put W := [w1, . . . ,wn], then in Gc = b, G = W HW ,

and b = W Hv. Note that once we have found the coefficients

c1, . . . ,cn, the approximation

v̂(t) =
n

∑
j=1

c jw j(t)

can be evaluated for all t for which the w j(t) are defined, not

just the sample times t1, . . . ,tm. Hence, for ti < t < ti+1, v̂(t) can

serve as an approximation of v(t).

Remark. Suppose that the w j are linearly independent and that

m = n. Then the w j are a basis for n-dimensional Euclidean

space, and the minimum value of (6.18) is zero when the c j are

the unique coefficients of the representation of v in this basis. In

other words, the approximation v̂(t) satisfies v̂(ti) = v(ti) for all

i; i.e., the approximation interpolates the data.

Application (Polynomial Approximation). We can compute

polynomial approximations in the sense of (6.18) very easily

using MATLAB. For example, suppose we want to approximate

v(t) = sin(2πt) for t ∈ [0,1] using a polynomial of degree 4.

This corresponds to projecting v onto the 5-dimensional space

spanned by 1, t, t2, t3, t4. Use the following commands.

t = linspace(0,1,30);

v = sin(2*pi*t);

c = polyfit(t,v,4); % 4th deg polynomial

tt = linspace(0,1,100);

vhat = polyval(c,tt);

plot(t,v,’-o’,tt,vhat,’--’)

In polynomial approximation, if m = n+1, then the approxima-

tion will interpolate the data.
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Theorem 7.11. Let X and Y be vector spaces, and let A:X →Y

be a linear operator. If dimX < ∞, then both kerA and rangeA

are finite dimensional, and

dimkerA+dimrangeA = dimX .

Proof. By Problem 1–3, dimkerA ≤ dimX . Put n := dimX , and

put r := dimkerA. Let {x1, . . . ,xr} be a basis for kerA. Extend

this to a basis for X , say {x1, . . . ,xr,xr+1, . . . ,xn}. Then it is

easy to show that {Axr+1, . . . ,Axn} is a basis for rangeA; i.e.,

dimrangeA = n− r = dimX −dimkerA. �

Problem 7–14. Show that {Axr+1, . . . ,Axn} in the preceding

proof is a basis for rangeA.

Problem 7–15. Let X and Y be vector spaces, and let A:X →Y

be a linear operator. Suppose dimX < ∞ and A is invertible.

Show that dimX = dimY .

Recall from Problems 2–2 and 2–3 that to show that a func-

tion is invertible, it is usually necessary to show that it is both

one-to-one and onto. The next proposition covers an important

special case for which it is enough to prove just one of these

properties, as the other holds automatically!

Proposition 7.12. Let X and Y be finite-dimensional vector

spaces, and let A:X →Y be a linear operator. If dimX = dimY ,

then A is nonsingular if and only if A is onto.

Proof. Recall that rangeA is a subspace of Y . If we can show

that dimrangeA = dimY , then by Problem 1–3, rangeA = Y .

Suppose that A is nonsingular. Then dimkerA = 0, and us-

ing Theorem 7.11, we can obtain dimrangeA = dimX = dimY .

Conversely, if A is onto, then rangeA = Y . This implies that

dimrangeA = dimY = dimX . Combining this with Theo-

rem 7.11 yields dimkerA = 0; hence, kerA is the zero subspace,

and A is nonsingular. �

The situation in Theorem 7.11, in which A maps a finite-

dimensional space into an infinite-dimensional space, arises fre-

quently in communication systems.

Example 7.13 (Modulation Operator). Let ϕ1(t), . . . ,ϕn(t) be

finite-energy signaling waveforms. For x = [x1, . . . ,xn]
′ ∈ C

n,

put

(Ax)(t) =
n

∑
k=1

xkϕk(t). (7.2)

Thus, A:C n → L2[0,T ]. This operator can be implemented as

shown in in Figure 5.
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Figure 5. Block diagram for the “modulation operator” A in (7.2).
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Example 7.19. Let A denote the “modulation operator” of Ex-

ample 7.13. Let 〈·, ·〉 denote the inner product on L2[0,T ]. We

can find the adjoint by inspection as follows. First note that

since A:Cn → L2[0,T ], A∗:L2[0,T ] → C
n. Hence, the formula

we are looking for must be such that A∗y is an n-dimensional

column vector. Write

〈Ax,y〉 =
∫ T

0
(Ax)(t)y(t)dt

=
∫ T

0

[
n

∑
k=1

xkϕk(t)

]
y(t)dt

=
n

∑
k=1

xk

∫ T

0
y(t)ϕk(t)dt

=
n

∑
k=1

xk〈y,ϕk〉.

This last expression is the Euclidean inner product of x =
[x1, . . . ,xn]

′ with the column vector whose kth component

〈y,ϕk〉. Hence,

A∗y =




〈y,ϕ1〉

...

〈y,ϕn〉



 .

This adjoint operator can be implemented as shown in Figure 6.
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Figure 6. Implementation of adjoint operator.

Remark. An inner product of the form
∫ T

0 y(t)ϕ(t)dt can al-

ways be expressed as a sampled convolution with impulse re-

sponse h(θ) = ϕ(T −θ). To see this write

(∫ ∞

−∞
h(t − τ)y(τ)dτ

)∣∣∣∣
t=T

=

(∫ ∞

−∞
h(T − τ)y(τ)dτ

)

=

(∫ ∞

−∞
ϕ(T − [T − τ])y(τ)dτ

)

= 〈y,ϕ〉,

where we have assumed that ϕ(τ) = 0 for τ outside [0,T ]. Be-

cause the impulse response h is defined in terms of the signal

ϕ , h is said to be “matched” to the signal. Hence, h is called a

matched filter. Letting Hk( f ) denote the Fourier transform of

ϕk(T − t), we see that Figure 6 can also be viewed as the bank

of matched filters in Figure 7.
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Figure 7. Matched filter equivalent of Figure 6.
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Problem 7–34. Assume A∗ exists.

(a) Show that kerA∗ = (rangeA)⊥.

(b) Show that (A∗)∗ = A.

(c) Show that kerA = (rangeA∗)⊥.

(d) Show that (kerA)⊥ ⊃ rangeA∗.

Hint: Problem 6–11(c).

(e) If X is a Hilbert space, and if A:X → Y is a bounded linear

operator, show that (kerA)⊥ = rangeA∗.

Hint: Use Problem 6–24.

(f) Show that kerA∗A = kerA.

Example 7.24 (Digital Communication Systems). Consider a

communication system employing the “modulation operator” A

defined in Example 7.13 and illustrated in Figure 5. We claim

that a reasonable receiver structure begins with the operator A∗

illustrated in Figure 6. If we transmit the waveform y = Ax, and

the receiver produces A∗y = A∗Ax, then x can be recovered from

A∗y by computing

(A∗A)−1(A∗y) = (A∗A)−1(A∗A)x = x.

Such a system is shown in Figure 8. The point is that since

y = Ax
· · · A∗ (A∗A)−1 xx A

Figure 8. An ideal, noiseless communication system.

the ϕk in (7.2) are linearly independent, A is nonsingular, and

by Problem 7–34(f), so is A∗A. Furthermore, since A∗A maps

C
n into itself, we have from Proposition 7.12 that A∗A is invert-

ible. Of course, receiver processing is greatly simplified if A∗A

is diagonal. This is the case in orthogonal frequency division

multiplexing (OFDM), in which

ϕk(t) = e j2π(k/T )t , 0 ≤ t ≤ T.

Remark. The foregoing example can be slightly generalized.

Before transmitting a vector x ∈ C
n, first apply an invertible

n×n matrix W ; i.e., transmit y = A(Wx). The receiver computes

A∗y as before. Now observe that

W−1(A∗A)−1(A∗y) = W−1(A∗A)−1(A∗A)Wx = x.

Problem 7–35. Let A and A∗ be as in Example 7.24. For x =
[x1, . . . ,xn], show that the ith component of A∗(Ax) is given by

n

∑
k=1

〈ϕk,ϕi〉xk.

Since (A∗A)x can be computed by applying the matrix with i k

entry 〈ϕk,ϕi〉 to the column vector x, the operator (A∗A)−1 can

be implemented by applying the inverse of this matrix.
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If A∗A is invertible, then (7.5) is equivalent to

x0 = (A∗A)−1A∗y0.

By Problem 7–34(f), A∗A is nonsingular if and only if A is non-

singular. If X is finite dimensional, then A∗A being nonsingular

implies that it is onto by Proposition 7.12, and therefore invert-

ible.

Remark. When A∗A is invertible, we have a formula for the

projection of y0 onto rangeA, namely (cf. (6.17)),

ŷ0 = Ax0 = A(A∗A)−1A∗y0. (7.6)

This expresses the projection as a function of A∗y0. Applying A∗

to (7.6) shows that A∗y0 is a function of the projection. Hence,

A∗y0 and the projection of y0 onto rangeA contain the same in-

formation.

Remark (Continued). In the digital communication sce-

nario of Example 7.24, it is easier to work with A∗y than the

projection of y because A∗y is a column vector and the projec-

tion of y is a waveform. But what really motivates the receiver

design is the idea of projecting the received waveform onto the

subspace spanned by the signaling waveforms. Even though Ax

is transmitted, the signal at the receiver is Ax + z, where z is a

noise waveform. Since Ax is in the range of A, the projection of

Ax+ z is equal to the sum of Ax and the projection of z onto the

range of A; i.e., there is no loss of information about the trans-

mitted signal Ax. There is the additional benefit that the energy

of the projected noise waveform is no greater than that of the

noise waveform itself (recall (6.8)).10

10Although the receiver does not lose any information about the signal by

doing the projection, the reader may wonder if the receiver loses information

about the noise that could be helpful. If the noise is white and Gaussian, it

can be proved that nothing is lost. Otherwise, projection can be suboptimal.

Consider the received vector

x

[
1

0

]
+

[
z

−z

]
.

If we project onto the space spanned by [1,0]′, we get [x + z,0]′ and lose the

information in the second dimension. However, if we add the first and second

components we recover x without noise.
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