Example 2.8 (Methods of Proving Linear Independence). Let $x(t)=1 / t$ and $y(t)=1 / t^{2}$ for $0<t<1$. We show that x and y are linearly independent. Suppose that

$$
\begin{equation*}
\frac{c_{1}}{t}+\frac{c_{2}}{t^{2}}=0, \quad t \in(0,1) \tag{2.2}
\end{equation*}
$$

Since (2.2) holds for all $t \in(0,1)$, it must hold for any particular values of t, say $t=1 / 4$ and $t=1 / 2$. This leads to the system of equations

$$
\begin{aligned}
& 4 c_{1}+16 c_{2}=0 \\
& 2 c_{1}+4 c_{2}=0
\end{aligned}
$$

which can easily be solved to show that $c_{2}=0$ and then that $c_{1}=0$ as well. Consider, however, another approach. Multiply (2.2) by t^{2} to get

$$
\begin{equation*}
c_{1} t+c_{2}=0, \quad t \in(0,1) \tag{2.3}
\end{equation*}
$$

Since both sides are continuous functions of t, we can let $t \rightarrow 0$ to learn that $c_{2}=0$. Hence, $c_{1} t=0$ for $t \in(0,1)$. Specializing to $t=1 / 2$ shows that $c_{1}=0$ as well. For a third approach, which avoids taking an explicit limit in (2.3), let us differentiate (2.3) instead. This yields $c_{1}=0$. Using this in (2.3) yields $c_{2}=0$ as well. We now combine these last two approaches to apply the linear functional method of Lemma 1.9. For $\varphi \in \operatorname{span}\{x, y\}$, put

$$
\begin{aligned}
\beta_{1}(\varphi) & :=\frac{\partial}{\partial t}\left[t^{2} \varphi(t)\right] \\
\beta_{2}(\varphi) & :=\lim _{t \rightarrow 0}\left[t^{2} \varphi(t)\right]
\end{aligned}
$$

Then $\beta_{1}(x)=1, \beta_{1}(y)=0, \beta_{2}(x)=0$, and $\beta_{2}(y)=1$.
Remark. The preceding example shows that there are many approaches to proving that a collection of waveforms is linearly independent. In specific applications, one approach may be significantly easier to carry out than another.

