Example 2.8 (Methods of Proving Linear Independence). Let x(t) = 1/t and $y(t) = 1/t^2$ for 0 < t < 1. We show that *x* and *y* are linearly independent. Suppose that

$$\frac{c_1}{t} + \frac{c_2}{t^2} = 0, \quad t \in (0,1).$$
(2.2)

Since (2.2) holds for *all* $t \in (0, 1)$, it must hold for any particular values of t, say t = 1/4 and t = 1/2. This leads to the system of equations

which can easily be solved to show that $c_2 = 0$ and then that $c_1 = 0$ as well. Consider, however, another approach. Multiply (2.2) by t^2 to get

$$c_1t + c_2 = 0, \quad t \in (0,1).$$
 (2.3)

Since both sides are continuous functions of t, we can let $t \rightarrow 0$ to learn that $c_2 = 0$. Hence, $c_1t = 0$ for $t \in (0, 1)$. Specializing to t = 1/2 shows that $c_1 = 0$ as well. For a third approach, which avoids taking an explicit limit in (2.3), let us differentiate (2.3) instead. This yields $c_1 = 0$. Using this in (2.3) yields $c_2 = 0$ as well. We now combine these last two approaches to apply the linear functional method of Lemma 1.9. For $\varphi \in \text{span}\{x, y\}$, put

$$\beta_1(\varphi) := \frac{\partial}{\partial t} [t^2 \varphi(t)],$$

$$\beta_2(\varphi) := \lim_{t \to 0} [t^2 \varphi(t)].$$

Then $\beta_1(x) = 1$, $\beta_1(y) = 0$, $\beta_2(x) = 0$, and $\beta_2(y) = 1$.

Remark. The preceding example shows that there are many approaches to proving that a collection of waveforms is linearly independent. In specific applications, one approach may be significantly easier to carry out than another.