Theorem 4.19. A set E in a metric space is closed < every
converging sequence of points in E converges to a point in E.

Proof. (=): Let E be closed. We must show that if x, — x
with x, € E, then x € E. For a proof by contradiction, suppose
otherwise that there is some sequence x, € E that converges to
a limit x ¢ E. Then x € E¢ where E¢ is open. Hence, there is
an € > 0 with B(x,&) C E€. However, since x, — x, for large n
X, € B(x,€) C E€. For these n, x, € E€ and x,, € E, which is a
contradiction.

(<): Suppose that every converging sequence from E has
its limit in £. We must prove that E is closed. For a proof
by contradiction, suppose otherwise that E is not closed. Then
E* is not open. Hence, there is an x € E€ such that there is no
open ball about x contained in E€. This implies that for each
open ball of the form B(x,1/n), B(x,1/n) ¢ E; i.e., there is an
Xn € B(x,1/n)NE. In other words, x,, € E and p (x,,,x) < 1/n—
0; i.e., x, is a sequence in E that converges to a point x ¢ E.
This contradicts the original assumption that every converging
sequence from E has its limit it E. L]

Theorem 4.20 (Approximation). Given x € E, either x € E, or
if x ¢ E, we can approximate x by some y € E. More precisely,
given € >0, there is ay € E with p(x,y) < €. Hence, by taking
€ =1/n, there is an x,, € E with p(x,,x) < 1/n. In other words,
there is a sequence from E that converges to x.

Proof. Let x € E with x ¢ E. We need to show that for every
€ >0, thereis ay € E with y € B(x, €). Suppose otherwise that
this is not the case. Then for some € > 0, B(x,e)NE = .
Equivalently, E C B(x, €)¢, which is a closed set. Hence,

xeE= () CCB(xeg)

C:ECC and
C is closed

Of course, x € B(x, €)¢ is a contradiction. O



