
Theorem 4.19. A set E in a metric space is closed ⇔ every

converging sequence of points in E converges to a point in E.

Proof. (⇒): Let E be closed. We must show that if xn → x

with xn ∈ E, then x ∈ E. For a proof by contradiction, suppose

otherwise that there is some sequence xn ∈ E that converges to

a limit x /∈ E. Then x ∈ Ec where Ec is open. Hence, there is

an ε > 0 with B(x,ε) ⊂ Ec. However, since xn → x, for large n

xn ∈ B(x,ε) ⊂ Ec. For these n, xn ∈ Ec and xn ∈ E, which is a

contradiction.

(⇐): Suppose that every converging sequence from E has

its limit in E. We must prove that E is closed. For a proof

by contradiction, suppose otherwise that E is not closed. Then

Ec is not open. Hence, there is an x ∈ Ec such that there is no

open ball about x contained in Ec. This implies that for each

open ball of the form B(x,1/n), B(x,1/n) 6⊂ Ec; i.e., there is an

xn ∈ B(x,1/n)∩E. In other words, xn ∈ E and ρ(xn,x) < 1/n →

0; i.e., xn is a sequence in E that converges to a point x /∈ E.

This contradicts the original assumption that every converging

sequence from E has its limit it E. �

Theorem 4.20 (Approximation). Given x ∈ E, either x ∈ E, or

if x /∈ E, we can approximate x by some y ∈ E. More precisely,

given ε > 0, there is a y ∈ E with ρ(x,y) < ε . Hence, by taking

ε = 1/n, there is an xn ∈ E with ρ(xn,x) < 1/n. In other words,

there is a sequence from E that converges to x.

Proof. Let x ∈ E with x /∈ E. We need to show that for every

ε > 0, there is a y ∈ E with y ∈ B(x,ε). Suppose otherwise that

this is not the case. Then for some ε > 0, B(x,ε)∩ E = ∅.

Equivalently, E ⊂ B(x,ε)c, which is a closed set. Hence,

x ∈ E =
⋂

C:E⊂C and
C is closed

C ⊂ B(x,ε)c.

Of course, x ∈ B(x,ε)c is a contradiction. �


