Theorem 4.19. A set E in a metric space is closed \iff every converging sequence of points in E converges to a point in E.

Proof. (\Rightarrow): Let E be closed. We must show that if $x_n \to x$ with $x_n \in E$, then $x \in E$. For a proof by contradiction, suppose otherwise that there is some sequence $x_n \in E$ that converges to a limit $x \notin E$. Then $x \in E^c$ where E^c is open. Hence, there is an $\epsilon > 0$ with $B(x, \epsilon) \subset E^c$. However, since $x_n \to x$, for large n, $x_n \in B(x, \epsilon) \subset E^c$. For these n, $x_n \in E^c$ and $x_n \in E$, which is a contradiction.

(\Leftarrow): Suppose that every converging sequence from E has its limit in E. We must prove that E is closed. For a proof by contradiction, suppose otherwise that E is not closed. Then E^c is not open. Hence, there is an $x \in E^c$ such that there is no open ball about x contained in E^c. This implies that for each open ball of the form $B(x, 1/n), B(x, 1/n) \notin E^c$; i.e., there is an $x_n \in B(x, 1/n) \cap E$. In other words, $x_n \in E$ and $\rho(x_n, x) < 1/n \to 0$; i.e., x_n is a sequence in E that converges to a point $x \notin E$. This contradicts the original assumption that every converging sequence from E has its limit in E.

Theorem 4.20 (Approximation). Given $x \in E$, either $x \in E$, or if $x \notin E$, we can approximate x by some $y \in E$. More precisely, given $\epsilon > 0$, there is a $y \in E$ with $\rho(x, y) < \epsilon$. Hence, by taking $\epsilon = 1/n$, there is an $x_n \in E$ with $\rho(x_n, x) < 1/n$. In other words, there is a sequence from E that converges to x.

Proof. Let $x \in E$ with $x \notin E$. We need to show that for every $\epsilon > 0$, there is a $y \in E$ with $y \in B(x, \epsilon)$. Suppose otherwise that this is not the case. Then for some $\epsilon > 0$, $B(x, \epsilon) \cap E = \emptyset$. Equivalently, $E \subset B(x, \epsilon)^c$, which is a closed set. Hence,

$$x \in E = \bigcap_{C : E \subset C \text{ and } C \text{ is closed}} C \subset B(x, \epsilon)^c.$$

Of course, $x \in B(x, \epsilon)^c$ is a contradiction.