Problem 7–45. Let *U* be a $p \times m$ matrix, and let *V* be an $n \times q$ matrix. Assume that *U'* and *V* are nonsingular. Define the linear operator $A: \mathbb{R}^{m \times n} \to \mathbb{R}^{p \times q}$ by AX := UXV. For $m \times n$ matrices X_1 and X_2 , use $\langle X_1, X_2 \rangle = \operatorname{tr}(X_1X'_2)$. For $p \times q$ matrices Y_1 and Y_2 , use $(Y_1, Y_2) = \operatorname{tr}(Y_1Y'_2)$. Note that for any matrices *S* and *T*, where *S* is $\mu \times v$ and *T* is $v \times \mu$, we have $\operatorname{tr}(ST) = \operatorname{tr}(TS)$. Assuming that there are multiple solutions of $AX = Y_0$, find the one of minimum norm. Your answer should be in terms of *U*, *V*, and Y_0 .

Problem 7–46. In the preceding problem suppose that $\langle X_1, X_2 \rangle$ is redefined as $\langle X_1, X_2 \rangle = tr(X_1 Q X'_2)$, where Q is a symmetric, positive-definite matrix. How does your answer change?

Problem 7–47. Given an operator $A: X \to Y$ and a vector y_0 , solve the constrained minimization problem

 $\min ||x||^2$ subject to $Ax = y_0$.

Assume that $\|\cdot\|$ comes from an inner product $\langle\cdot,\cdot\rangle$ on *X*. Denote the inner product on *Y* by (\cdot,\cdot) . How does your answer change if $\|\cdot\|$ is replaced by $\|\cdot\|_Q$, where $\|\cdot\|_Q$ is the norm induced by the inner product $[\cdot,\cdot]$ defined in Problem 7–42?

We can recast Problem 7-46 as

min tr(XQX') subject to $UXV = Y_0$.

One instance of this problem arises as follows when p and q are both equal to m. Suppose we observe the noisy measurement Vx + W, where W is a *n*-dimensional white-noise vector with covariance matrix Q, V is a known gain matrix, and x is an unknown *m*-dimensional signal vector to be estimated. We estimate the signal by applying a matrix X to the measurement to obtain X(Vx+W). The mean-squared error between the estimate and the signal is

$$E[||(XVx+XW)-x||^2],$$

where in this expression $\|\cdot\|$ denotes the Euclidean norm on *m*-dimensional column vectors. We want to choose the $m \times n$ matrix *X* to minimize this expectation. However, the expectation depends on the unknown signal vector *x*. Writing the expectation as

$$\mathsf{E}[\|(XV-I)x+XW\|^2]$$

suggests that we restrict attention to matrices X such that XV = I. Then we just have to minimize

$$E[||XW||^{2}] = tr(E[||XW||^{2}]) = tr(E[(XW)'(XW)])$$

= $E[tr\{(XW)'(XW)\}] = E[tr\{(XW)(XW)'\}]$
= $E[tr(XWW'X')] = tr(E[XWW'X])$
= $tr(XE[WW']X') = tr(XQX')$

subject to XV = I.