Problem 7-45. Let U be a $p \times m$ matrix, and let V be an $n \times q$ matrix. Assume that U^{\prime} and V are nonsingular. Define the linear operator $A: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times q}$ by $A X:=U X V$. For $m \times n$ matrices X_{1} and X_{2}, use $\left\langle X_{1}, X_{2}\right\rangle=\operatorname{tr}\left(X_{1} X_{2}^{\prime}\right)$. For $p \times q$ matrices Y_{1} and Y_{2}, use $\left(Y_{1}, Y_{2}\right)=\operatorname{tr}\left(Y_{1} Y_{2}^{\prime}\right)$. Note that for any matrices S and T, where S is $\mu \times v$ and T is $v \times \mu$, we have $\operatorname{tr}(S T)=\operatorname{tr}(T S)$. Assuming that there are multiple solutions of $A X=Y_{0}$, find the one of minimum norm. Your answer should be in terms of U, V, and Y_{0}.

Problem 7-46. In the preceding problem suppose that $\left\langle X_{1}, X_{2}\right\rangle$ is redefined as $\left\langle X_{1}, X_{2}\right\rangle=\operatorname{tr}\left(X_{1} Q X_{2}^{\prime}\right)$, where Q is a symmetric, positive-definite matrix. How does your answer change?

Problem 7-47. Given an operator $A: X \rightarrow Y$ and a vector y_{0}, solve the constrained minimization problem

$$
\min \|x\|^{2} \quad \text { subject to } \quad A x=y_{0}
$$

Assume that $\|\cdot\|$ comes from an inner product $\langle\cdot, \cdot\rangle$ on X. Denote the inner product on Y by (\cdot, \cdot). How does your answer change if $\|\cdot\|$ is replaced by $\|\cdot\|_{Q}$, where $\|\cdot\|_{Q}$ is the norm induced by the inner product $[\cdot, \cdot]$ defined in Problem 7-42?

We can recast Problem 7-46 as

$$
\min \operatorname{tr}\left(X Q X^{\prime}\right) \quad \text { subject to } U X V=Y_{0}
$$

One instance of this problem arises as follows when p and q are both equal to m. Suppose we observe the noisy measurement $V x+W$, where W is a n-dimensional white-noise vector with covariance matrix Q, V is a known gain matrix, and x is an unknown m-dimensional signal vector to be estimated. We estimate the signal by applying a matrix X to the measurement to obtain $X(V x+W)$. The mean-squared error between the estimate and the signal is

$$
\mathrm{E}\left[\|(X V x+X W)-x\|^{2}\right]
$$

where in this expression $\|\cdot\|$ denotes the Euclidean norm on m dimensional column vectors. We want to choose the $m \times n$ matrix X to minimize this expectation. However, the expectation depends on the unknown signal vector x. Writing the expectation as

$$
\mathrm{E}\left[\|(X V-I) x+X W\|^{2}\right]
$$

suggests that we restrict attention to matrices X such that $X V=$ I. Then we just have to minimize

$$
\begin{aligned}
\mathrm{E}\left[\|X W\|^{2}\right] & =\operatorname{tr}\left(\mathrm{E}\left[\|X W\|^{2}\right]\right)=\operatorname{tr}\left(\mathrm{E}\left[(X W)^{\prime}(X W)\right]\right) \\
& =\mathrm{E}\left[\operatorname{tr}\left\{(X W)^{\prime}(X W)\right\}\right]=\mathrm{E}\left[\operatorname{tr}\left\{(X W)(X W)^{\prime}\right\}\right] \\
& =\mathrm{E}\left[\operatorname{tr}\left(X W W^{\prime} X^{\prime}\right)\right]=\operatorname{tr}\left(\mathrm{E}\left[X W W^{\prime} X\right]\right) \\
& =\operatorname{tr}\left(X \mathrm{E}\left[W W^{\prime}\right] X^{\prime}\right)=\operatorname{tr}\left(X Q X^{\prime}\right)
\end{aligned}
$$

subject to $X V=I$.

