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Abstract

We present a new method to estimate the Hurst pa-
rameter of the increment process in network traffic –
a process that is assumed to be self-similar. The con-
fidence intervals and biasedness are obtained for the
estimates using the new method. This new method is
then applied to pseudo-random data and to real traf-
fic data. We compare the performance of the new
method to that of the widely-used wavelet method, and
demonstrate that the former is much faster and pro-
duces much smaller confidence intervals of the Hurst
parameter estimate. We believe that the new method
can be used as an on-line estimation tool forH and
thus be exploited in the new TCP algorithms that ex-
ploit the known self-similar and long-range dependent
nature of network traffic.

1 Introduction

It is now generally accepted that network traffic
exhibits the features of long-range dependence and
self-similarity [8, 10, 11, 12, 13, 4, 14]. The parameter
that measures these features is known as the Hurst
parameter,H, and many methods for estimatingH
have been proposed. For example, the following
methods are described in the text by Beran [3]: R/S
method, variance-time analysis, Higushi’s method,
correlogram method, periodogram method and Whit-

tle estimator. More recent methods are residuals
of regression method due to Penget al. [16] (see
also [17]) and the wavelet method due to Abry and
Veitch [1]. By far, the wavelet method is the most
widely used.

Almost all of the above methods are based on
asymptotics rather than the exact form of the co-
variance function. However, since LAN traffic is
generally accepted asexactly second-order self-
similar [8], which specifies the form of the covariance
function, we propose a new method for estimatingH
that exploits this structure. The new method is much
faster and yields smaller confidence intervals than the
wavelet method.

The remainder of the paper is organized as follows.
Section 2 presents mathematical definitions and
properties that will be used throughout the paper.
In Section 3, we present and describe the proposed
method for estimating the Hurst parameter. We then
apply this novel method to artificial and real traffic
data in Section 4 to check its performance, and
compare it with that of the wavelet method. Lastly,
we present concluding remarks and further research
directions in Section 5.
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2 Preliminaries

Let Xi denote the number of bits, bytes or packets
seen during theith interval. We say thatXi is second-
order stationaryif its meanE(Xi) does not depend on
i and if the autocovariance function

E[(Xi − E(Xi))(Xj − E(Xj))]

depends oni and j only through their difference
k = i − j, in which case we write

γ(k) = E[(Xi+k − E(Xi+k))(Xi − E(Xi))].

We then put

σ2 = γ(0) = E[(Xi − E(Xi))2],

and

ρ(k) =
γ(k)
σ2

,

to denote the variance and autocorrelation function of
the processXi, respectively.

A second-order stationary process is said to beex-
actly second-order self-similarwith Hurst parameter
0 < H < 1, if

γ(k) =
σ2

2
(|k + 1|2H − 2|k|2H + |k − 1|2H),

or equivalently,

ρ(k) =
1
2
(|k + 1|2H − 2|k|2H + |k − 1|2H). (1)

If Xi is a Gaussian process, it is known asfractional
Gaussian noise.

3 The New Method

SinceXi is exactly second-order self-similar, we
have from (1) that

ρ(1) = 22H−1 − 1,

We can solve forH to get

Ĥ =
1
2
[1 + log2(1 + ρ(1))].

Given observed dataX1, . . . , Xn, let

µ̂n =
1
n

n∑
i=1

Xi,

γ̂n(k) =
1
n

n−k∑
i=1

(Xi − µ̂n)(Xi+k − µ̂n),

σ̂2
n = γ̂n(0)

and

ρ̂n(k) =
γ̂n(k)
σ̂2

n

, (2)

denote thesample mean, the sample covariance, the
sample varianceand the sample autocorrelation,
respectively.

We then put

Ĥn =
1
2
[1 + log2(1 + ρ̂n(1))], (3)

to denote the estimated Hurst parameter of the process
Xi.

Theorem: Let Xi be an exactly second-order self-
similar Gaussian process, i.e., fractional Gaussian
noise. Assume in (1) that0 < H ≤ 3

4 . Then for
large sample sizen, ρ̂n(1) is approximately N(µn, σ2

n),
where

µn = ρ(1) − (1 − ρ(1))n2H−2,

and

σ2
n =

1
n
{(1 + 3ρ2(1)) + 2

∞∑
k=1

[
(1 + 2ρ2(1))ρ2(k)

+ρ(k − 1)ρ(k + 1) − 4ρ(1)ρ(k − 1)ρ(k)
]
}, (4)

if H ∈ (0, 3
4) and

σ2
n =

log n

n
[2H(2H − 1)(1 + ρ(1))]2, (5)

if H = 3
4 .

Proof: This is a special case of Hosking’s result [6].

A plot of nσ2
n in (4) (which does not depend onn)

as a function of the Hurst parameterH, summing over
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k = 1 to 107 (instead ofk = 1 to∞ as in (4)) is given
in Figure 1. Now that we knoŵρn(1) is N(µn, σ2

n),

P (| ρ̂n(1) − µn

σn
| ≤ 1.96) = 0.95,

i.e.,

µn − 1.96σn ≤ ρ̂n(1) ≤ µn + 1.96σn

holds with95% probability. Using (3),

h− ≤ Ĥn ≤ h+,

where

h± =
1
2
{1+log2[1+ρ(1)−(1−ρ(1))n2H−2±1.96σn]},

(6)
also holds with95% probability.

Note that the Theorem may hold even ifXi is not
fractional Gaussian noise (see discussion in [6]). For
example, the Theorem still holds whenXi is fractional
ARIMA (see [7] for similar analysis for such process).
In the case whenH > 3

4 , the limiting distribution in
the Theorem exists, but it is not normal. The cumu-
lants of this distribution are given in [6, Theorem 6].
For practical proposes, in constructing the confidence
intervals of the estimatêHn for H > 3

4 , we propose
using the mean and variance of the limiting distribu-
tion, assume normality and proceed as in the case of
H ∈ (0, 3

4). The validity of this approach will be in-
vestigated in Section 4. Thus, in such case, the value
σ2

n in (6) is taken to be

σ2
n = (1 − ρ(1))2n4H−4κ2, (7)

where κ2 corresponds to the value of the vari-
ance of the limiting distribution. For instance,
κ2 = 1.832, 0.518, 0.157 and 0.003 for the values
H = 0.80, 0.85, 0.90 and0.95, respectively.

3.1 Comments on the Confidence Intervals

For knownH, the 95% confidence interval of the
estimateĤn is [h−, h+], with h− and h+ as in (6),
with σn as in Figure 1 ifH ∈ (0, 3

4), as in (5) ifH = 3
4
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Figure 1. A plot of nσ2

n in (7) as a function of
the Hurst parameter H , in the second-order
self-similar case.

and as in (7) ifH ∈ (3
4 , 1). Let wn denote the width

of such intervals, i.e.,

wn = h+ − h−.

A log-log plot of wn versus the number of samples
n is given in Figure 2 for different values ofH. It is
remarkable to see the plot resembling a straight line for
each value ofH. Thus, the widthwn can be written as

wn ≈ an−b, (8)

wherea andb are constants for fixedH. The values of
these constants are given in Table 1. It is interesting to
note that the widthwn is upper bounded by thewn at
H = 0.74. Hence in the case whenH is not known
(which is the typical case with real data), we choose
the confidence interval centered aroundĤn with width

wn =
5√
n

. (9)

3.2 Summary of the Algorithm

In what follows, we present a summary of the new
method:
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Figure 2. A plot of the width of the 95% confi-
dence intervals for different H values

• Let X1, X2, . . . , Xn be a realization of a Gaus-
sian second-order self-similar process,

• Computeρ̂n(1) as in (2),

• ComputeĤn as in (3), which is the estimated
Hurst parameter,

• The 95% confidence interval ofH is centered
around the estimatêHn with width as in (9).

4 Illustrative Examples

For each value ofH = 0.10, 0.20, . . . , 0.90, we
generate100 realizations of a fractional Gaussian
noise. The length of each realization isn = 4000
points. For a given estimation method, we obtain
100 estimated values ofH. Call these estimates
Ĥ

(k)
n , k = 1, 2, . . . , 100. We compute their sample

mean. We also provide the theoretical and empirical
95% confidence intervals of the estimatesĤn andĤw

n

from the proposed method and the wavelet method,
respectively. The result of the application of the new
method and the wavelet method to these data sets is
given in Tables 2 and 3, respectively.

H a b

0.10 3.65 0.50
0.20 3.44 0.50
0.30 3.28 0.50
0.40 3.08 0.50
0.50 2.85 0.50
0.60 2.65 0.50
0.70 2.92 0.50
0.80 1.28 0.40
0.90 0.18 0.21

Table 1. The values of the constants a and b
in (8) for each value of H .

From both Tables 2 and 3, it is observed that
the confidence intervals obtained through the new
methodCIo are narrower than those obtained through
the wavelet method. The width of the empirical
confidence intervals for the optimization method is
about 0.05 versus0.11 to 0.13 for those obtained
through the wavelet method.

The theoretical and empirical confidence intervals
are almost the same for the new method. This simi-
larity holds even forH ≥ 0.80, where we assumed
normality although we knew that the distribution
of ρ̂n(1) is not normal. On the other hand, for the
wavelet method, the empirical confidence intervals
are considerably wider than theoretical ones, with the
difference in width getting as high as0.11 versus0.07
for H = 0.90.

For H < 0.80, we see that the mean of the esti-
mated Hurst parameter obtained by the new method
Ĥo is the same as the true valueH. For H < 0.40,
the mean of the estimated Hurst parameter obtained
by the wavelet method̂Hw is far from the trueH and
the latter does not fall in the95% confidence interval.
For 0.40 ≤ H ≤ 0.70, the mean ofĤw is closer to
H and the theoretical confidence intervals contain the
true value.

For H = 0.80, the new method under estimates
the true value, with the mean of the estimatesĤn is
0.79. The wavelet method, on the other hand, over
estimates the true Hurst parameter value by the same
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H Mean of Theoretical Empirical
Ĥn CIo CIo

0.10 0.10 [0.06,0.14] [0.07,0.13]
0.20 0.20 [0.17,0.23] [0.17,0.23]
0.30 0.30 [0.27,0.33] [0.27,0.32]
0.40 0.40 [0.37,0.43] [0.37,0.43]
0.50 0.50 [0.48,0.52] [0.47,0.52]
0.60 0.60 [0.58,0.62] [0.58,0.63]
0.70 0.70 [0.67,0.73] [0.68,0.72]
0.75 0.74 [0.72,0.77] [0.72,0.76]
0.80 0.79 [0.77,0.81] [0.77,0.82]
0.90 0.87 [0.86,0.90] [0.85,0.90]

Table 2. Results of empirical and theoretical
study of the new method using 100 indepen-
dent realizations.

quantity, namely the mean of the estimatesĤw
n is

0.81. For H = 0.90, the estimates produced by the
wavelet method over estimate the true value by the
same quantity, namely the mean of the estimates
Ĥw

n is 0.91. The new method, on the other hand,
under estimatesH, with the mean of the estimates
Ĥn is 0.87. In this case, On average,̂Hw

n are closer
to the true value than̂Hn. However, the empirical
confidence intervals of the wavelet method are much
larger than those of the new method, with the width of
the former is almost double the latter. It is also worth
noting that forH > 0.20, the confidence intervals
of the estimates obtained by the new method are
contained in those of the wavelet method.

The number offlopsis 2.5×104 for the new method
and1.3 × 107 for the wavelet method. Thus, the for-
mer is5200 times faster than the latter. In general, it
is apparent that the new method gives more accurate
and reliable results and is much faster than the wavelet
method.

We next consider real data to test both methods. For
this purpose, we investigate Ethernet measurements
for a local area network traffic at Bellcore, Morris-
town, New Jersey [8]. From this data we extract a
data with lengthn = 8475 representing the amount
of traffic observed each100ms. Passing the Bellcore
data through the wavelet method giveŝHw

n = 0.79

H Mean of Theoretical Empirical
Ĥw

n CIw CIw

0.10 0.00 [-0.10,-0.02] [-0.05,0.06]
0.20 0.16 [0.07,0.15] [0.10,0.22]
0.30 0.28 [0.21,0.28] [0.21,0.34]
0.40 0.39 [0.33,0.40] [0.32,0.44]
0.50 0.50 [0.44,0.52] [0.44,0.56]
0.60 0.60 [0.55,0.62] [0.55,0.67]
0.70 0.70 [0.65,0.73] [0.65,0.75]
0.75 0.76 [0.73,0.85] [0.70,0.82]
0.80 0.81 [0.75,0.83] [0.75,0.87]
0.90 0.91 [0.86,0.93] [0.84,0.95]

Table 3. Results of empirical and theoretical
study of the wavelet method using 100 inde-
pendent realizations.

with 95% confidence intervalCIw = [0.75, 0.82].
The new method, on the other hand, results in
the value Ĥn = 0.81 with confidence interval
CIo = [0.78, 0.84]. The variance-time,R/S, and pe-
riodogram methods resulted in̂H = 0.80, 0.79, 0.82,
respectively [8].

In short, it is clear that the new method and the
wavelet method give close estimates with both real
and artificial data. It is also noted that in all cases
considered in this section, the new method’s estimates
fall in the 95% confidence intervals of the wavelet
method. Moreover, the confidence intervals of the new
method are contained in these of the wavelet method.
Finally, the new method was shown to be much faster
than the wavelet method.

5 Summary and Concluding Remarks

In this paper, we have presented a new tool to
estimate the Hurst parameter in local area network
traffic. The confidence intervals and biasedness of the
estimates obtained by this new method are obtained.
This new method is then applied to pseudo-random
data and to real LAN traffic data. We compare the per-
formance of the new method to that of the widely-used
wavelet method. We demonstrated that the former is
much faster and produces smaller confidence intervals
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of the Hurst parameter estimates. Furthermore, the
confidence intervals of the estimates from the new
method were shown to be contained in the confidence
intervals of the wavelet method. Moreover, the new
method was found to be much faster than the wavelet
method.

In view of the above, we believe that this method
can be used as an on-line estimation tool forH and
thus be exploited in the new TCP algorithms that ex-
ploit the known self-similar (and therefore long-range
dependent) nature of network traffic. We mention for
example, TCP – Traffic Prediction proposed in [5].
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