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Correspondence
A New Formula for Lognormal Characteristic Functions

John A. Gubner

Abstract—Numerical computation of lognormal characteristic functions
is a challenging problem because the defining integral formulas are not
well suited to the more common numerical integration techniques. In this
paper, a simple change-of-contour argument is used to convert the integral
into one in which the oscillatory nature of the new integrand does not
depend on the argument of the characteristic function. Hence, efficient
numerical computation of the characteristic function is possible for an
extremely large range of its argument. The method generalizes to allow the
computation of the moment-generating function when the argument has a
negative real part. A simple program for computing the new integral using
Gaussian quadrature and another program for generating the quadrature
nodes and weights are given.

Index Terms—Approximation methods, Fourier transforms, Gaussian
quadrature, moment-generating function, numerical integration.

I. INTRODUCTION

Computation of lognormal characteristic functions is a challenging
problem because no closed-form expression exists [10] and because
the defining integral formulas are not well suited to the more common
numerical integration techniques [5]. This is unfortunate because the
characteristic function would be the obvious tool for analyzing sums
of independent lognormal random variables.

The study of such sums has been of intense interest in the study of
radio transmission, at least as far back as the 1960 paper of Fenton
[8]. Fenton noted that the numerical convolution of two lognormal
densities resembled another lognormal density. This appears to be
the starting point for him and for subsequent authors to study the
approximation of the distribution of a sum of lognormal random
variables by a lognormal distribution, e.g., [2]–[6], [13], and [14].

In particular, the 2004 paper of Beaulieu and Xie [5] summarizes
the advantages and disadvantages of various methods. To assess these
approximations, Beaulieu and Xie first needed to compute lognor-
mal characteristic functions, which is very challenging. They tried a
number of techniques such as the trapezoidal rule, Simpson’s rule,
and the fast Fourier transform, and finally settled on the modified
Clenshaw–Curtis method [12].

In this paper, we regard the characteristic function as a contour inte-
gral of an entire function in the complex plane. By the Cauchy–Goursat
theorem, we are justified in using an alternative contour. We propose
a new contour that has the advantage of the oscillatory nature of the
resulting integrand not depending on the argument of the characteristic
function. Hence, we can readily compute the characteristic function for
an extremely large range of its argument numerically, e.g., 0 ≤ ν ≤
10 000. This is illustrated using the characteristic functions considered
in [5].
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Remark: Our method generalizes to allow the computation of the
moment-generating function when its argument has a negative real
part. Details are presented at the end of Section III.

II. NOTATION

Let Z ∼ N(0, σ2) denote a Gaussian random variable with zero
mean and variance σ2, i.e., the density of Z is

f(z) :=
exp [−(z/σ)2/2]√

2πσ
.

The random variable Y := eZ is said to be lognormal. It follows that
the lognormal characteristic function is

ϕ(ν) := E[ejνY ] = E
[
exp{jνeZ}

]
.

As noted in [11, eq. (14)] and [5, p. 481], there is no loss of gen-
erality in assuming that Z has zero mean; just observe that for any
constantm

E
[
exp

{
jνe(Z+m)

}]
= E

[
exp

{
j(νem)eZ

}]
= ϕ(νem).

Recall also that ϕ(0) = 1, Re ϕ is even, and Im ϕ is odd; hence, it
suffices to restrict attention to ν > 0.

The dB spread of Y , which is denoted by σdB, is defined as the
standard deviation of

10 log10 Y =
10

ln(10)
Z.

Hence, σdB = σ · 10/ ln(10), or σ = σdB ln(10)/10.

III. NEW FORMULA FOR THE LOGNORMAL

CHARACTERISTIC FUNCTION

From the preceding discussion, we have

ϕ(ν) = E
[
exp{jνeZ}

]
=

∞∫
−∞

exp[jνez]f(z)dz. (1)

This integral is notoriously difficult to compute numerically because
the factor exp[jνez] is extremely oscillatory as z → +∞. Further-
more, as σ increases, the width of the Gaussian density f(z) increases,
and more oscillations have to be considered. An obvious alternative
is to make the change of variable τ = ez . This results in an ordinary
Fourier transform integral of f(ln τ)/τ from zero to infinity. However,
the function f(ln τ)/τ decays very slowly, and so, there are still
excessively many oscillations to be considered.

We propose another approach as follows: First, the integral in (1)
can be viewed as a contour integral in the complex plane with the
contour being the real axis. Second, the integrand is an entire function.
Third, using the Cauchy–Goursat theorem [7], it is easy to argue that
for ν > 0, the previous integral is equal to

∫
C

exp[jνez]f(z)dz
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Fig. 1. Dashed lines show the envelope exp[−{νet + (t/σ)2/2}], and the
solid lines show the real part of the integrand in (2).

where C is the contour

C := {z(t) = t+ jπ/2 : −∞ < t < ∞} .

Thus, we have

ϕ(ν) =
exp

[
(π/(2σ))2 /2

]
√
2πσ

·
∞∫

−∞

exp[−νet]e−jπt/(2σ2)e−(t/σ)2/2dt. (2)

Notice that now the only oscillatory factor e−jπt/(2σ2) does not
depend on ν and depends only linearly on t. As σ increases, the
oscillations become less, as illustrated in Fig. 1, making numerical
integration easier.

The foregoing change-of-contour method easily generalizes to com-
pute the moment-generating function E[esY ] for Re s < 0. In this
case, if s = λ+ jν, the new contour would be

C = {z(t) = t+ jθ,−∞ < t < ∞}

where θ := tan−1(−ν/λ). The resulting integral is

E
[
e(λ+jν)Y

]
=

exp [(θ/σ)2/2]√
2πσ

·
∞∫

−∞

exp
[
et(λ cos θ − ν sin θ)

]

· e−jθt/σ2
e−(t/σ)2/2dt.

The only oscillating factor is e−jθt/σ2
. Although θ depends on λ and

ν, 0 ≤ |θ| < π/2. Hence, the oscillations of the integrand cannot get
arbitrarily bad.

IV. FAST COMPUTATION OF (2)

Make the change of variable x = t/(
√
2σ) in (2) to get

ϕ(ν) =
exp

[
(π/(2σ))2 /2

]
√
π

ψ(ν) (3)

where

ψ(ν) :=

∞∫
−∞

exp[−νe
√

2σx]e−jπx/(
√

2σ)e−x2
dx. (4)

Using n-point Hermite–Gauss quadrature [1], [9] with weightswk and
nodes xk, we have

ψ(ν) ≈
n∑

k=1

wk exp[−νe
√

2σxk ]e−jπxk/(
√

2σ).

A six-line Matlab program is given in the Appendix for generating the
Hermite–Gauss weights wk and nodes xk.
Example 1: It is easy to evaluate the preceding formula in Matlab

using vectorized code and then apply (3). Let w denote the row vector
of the weights, and let x denote the column vector of the nodes for
n-point Hermite–Gauss quadrature. Suppose that nu is a row vector
of points ν at which we need to compute ϕ(ν). Then, the following
Matlab script computes the row vector of values ϕ(ν) and plots the
real and imaginary parts:

% Get nodes and weights (see Appendix).
[x, w] = hermitequad(45);
%
% Precompute all quantities not
% depending on nu.
%
sigma = 0.25;
sqrt2 = sqrt(2);
Hfactor = exp((pi/2/sigma)ˆ2/2)/sqrt(pi);
wej = w. ∗ exp(−j ∗ pi/sqrt2/sigma ∗ x′);
exparg = exp(sqrt2 ∗ sigma ∗ x);
%
% Compute phi(nu) and plot.
%
nu = linspace(0, 20, 200);
phi = ones(size(nu));
I = find(nu˜= 0);
phi(I) = Hfactor ∗ wej ∗ exp(−exparg ∗ nu(I));
plot(nu, real(phi), nu, imag(phi),′ --′)

Such plots are shown in Figs. 2–4 for σ = 0.25, σdB = 6 (cor-
responding to σ ≈ 1.38), and σdB = 12 (corresponding to σ ≈
2.76), respectively. All the plots were generated with (n = 45)-point
Hermite–Gauss quadrature. The plots agree with [5, Figs. 1–3]. In-
creasing n beyond 45 did not visually change our plots.
Example 2: Because the oscillatory behavior of the integrand in (2)

does not depend on ν, we can compute ϕ(ν) for extremely large values
of ν. This is illustrated in Figs. 5 and 6 still using (n = 45)-point
Hermite–Gauss quadrature. These plots show on a semilog scale the
absolute values of the real and imaginary parts of ϕ(ν) for σdB = 6
and σdB = 12. The cusps occur at the roots of the functions.
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Fig. 2. Real part (solid line) and imaginary part (dashed line) of characteristic
function φ(ν) with σ = 0.25.

Fig. 3. Real part (solid line) and imaginary part (dashed line) of characteristic
function φ(ν) with σdB = 6 (σ ≈ 1.38).

Fig. 4. Real part (solid line) and imaginary part (dashed line) of characteristic
function φ(ν) with σdB = 12 (σ ≈ 2.76).

V. MORE ACCURATE COMPUTATION OF (2)

Basic calculus applied to the exponent of the envelope
exp[−{νet + (t/σ)2/2}] in (2) shows that the envelope maximum
occurs at the solution of et = −t/(νσ2). Denote this solution by t0.
Sketching the curve et and the straight line −t/(νσ2) shows that the
solution t0 is always negative and goes to −∞ as the product νσ2

goes to∞. It is easy to obtain t0 using the Matlab function fzero.
The nodes for Hermite–Gauss quadrature are centered around the

origin. However, as the product νσ2 becomes large, the “important”
part of the integrand drifts off to the left. Hence, a better approximation
of (2) can be obtained if the infinite limits of integration are replaced
with finite limits a and b, with a < t0 < b and such that the envelope
at a and at b is, say, 10−16 of the maximum envelope value at t0. In
other words, a and b are the solutions of

exp
[
−

{
νet+(t/σ)2/2

}]
=exp

[
−

{
νet0+(t0/σ)

2/2
}]

/1016.

Taking logarithms, we see that a and b are the solutions of

νet + (t/σ)2/2−
{
νet0 + (t0/σ)

2/2
}
− 16 ln 10 = 0.

Hence, a and b are also easily obtained using fzero.
Next, any integral over [a, b] is easily written as an integral over

[0, 1], and integrals over [0, 1] are easily approximated using the

Fig. 5. Absolute values of the real part (solid line) and imaginary part (dashed
line) of characteristic function φ(ν) with σdB = 6 (σ ≈ 1.38).

Fig. 6. Absolute values of the real part (solid line) and imaginary part (dashed
line) of characteristic function φ(ν) with σdB = 12 (σ ≈ 2.76).

Legendre–Gauss quadrature. As noted in the Appendix, a trivial mod-
ification to the Matlab function found there will return the nodes and
weights necessary for Legendre–Gauss quadrature.
Example 3: With σdB = 12 and ν = 10 000, we computed

ϕ(ν) using 45-point Hermite–Gauss quadrature and 45-point
Legendre–Gauss quadrature after determining a = −25.7, t0 =
−9.04, and b = −5.49. The results are (real part only)

ϕ(ν) =

{
−1.93× 10−4, (Hermite–Gauss)
−1.9300709586× 10−4, (Legendre–Gauss)

which are correct to the number of digits shown. In both methods, more
correct digits can be obtained by increasing the number of quadrature
nodes and weights. However, for a given amount of integration work,
applying that work to the interval [a, b] yields better results.

VI. CONCLUSION

We have derived a new integral formula (2) for the lognormal
characteristic function. It has the advantage of the oscillations in the
integrand no longer depending on the argument of the characteristic
function. The new integral is well suited to Gaussian quadrature,
and we have provided a simple Matlab function in the Appendix to
compute the nodes and weights. Our new integral becomes better
suited for numerical computation as σ increases. We also note that
as σ → 0, factor in (3) goes to infinity. However, for a small σ,
Hermite–Gauss quadrature can be applied directly to (1).
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APPENDIX

The Matlab function shown below generates Hermite–Gauss nodes
and weights. The program is based on the following result, which can
be found in [9, p. 153].
Theorem: The nodes xi and weights wi of a Gaussian quadra-

ture formula based on orthogonal polynomials can be obtained from
the eigenvalue decomposition of the symmetric tridiagonal Jacobi
matrix

Jn :=




a0

√
b1√

b1 a1

√
b2

√
b2

. . .
. . .

. . . an−2

√
bn−1√

bn−1 an−1




where an and bn are the same as those in the three-term recurrence
formula for the orthogonal polynomials normalized to have leading
coefficient one. If V ′JnV = Λ = diag(λ1, . . . , λn), where V ′V = I
is the n× n identity matrix, then xi = λi, and wi = b0v

2
i,1, where vi

is the ith column of V , and vi,1 is the first component of vi.
For the Hermite polynomials with leading coefficient one, we have

from [9, p. 29, Table 1.1] that for k = 1, 2, . . . , ak = 0 and bk =
k/2; we also have b0 =

√
π. Hence, the following Matlab function

is immediate:

function [x, w] = hermitequad(n)
%
% Generate nodes and weights for
% Hermite-Gauss quadrature.
% Note that x is a column vector
% and w is a row vector.
%
u = sqrt([1 : n− 1]/2); % upper diagonal of J
[V, Lambda] = eig(diag(u, 1) + diag(u,−1));
[x, i] = sort(diag(Lambda));
Vtop = V(1, :);
Vtop = Vtop(i);
w = sqrt(pi) ∗ Vtop.ˆ2;

Remark: Using [9, p. 29, Table 1.1], it is trivial to modify the
preceding Matlab code to return the nodes and weights for other quad-
ratures such as Laguerre–Gauss and Legendre–Gauss.
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Steered-STS Transmit Antenna Architecture With
Semiblind Channel Estimation at the

Receiver in CDMA2000

Alexandr M. Kuzminskiy, Francis J. Mullany, and
Constantinos B. Papadias

Abstract—The problem of pilot and data channel mismatch in a steered
space-time spreading (SSTS) system is addressed by means of advanced
signal processing at the mobile receiver. The main idea is to apply the
SSTS antenna array architecture and transmission algorithm and involve
both the pilot and traffic signals in channel estimation at the receiver.
Two semiblind algorithms are compared with the conventional pilot-based
receiver in a CDMA2000-1X RC3 environment by means of simulations
with variable speed and spatial angular spread, taking into account main
imperfections such as estimation error for the correlation coefficient at
the reverse link, calibration error, and different pilot powers for diversity
antennas. It is demonstrated that the semiblind algorithms outperform the
conventional receiver in the low- and medium-speed area.

Index Terms—Alamouti coding, beamforming, semiblind channel
estimation, space-time coding, steered space-time spreading, transmit
diversity.

I. INTRODUCTION

In wireless communications, both widely and closely spaced an-
tenna arrays offer some performance benefits in different environ-
ments. In the first case, open-loop transmit diversity schemes such as
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