The Bézout Lemma and an Application

John A. Gubner

Department of Electrical and Computer Engineering University of Wisconsin–Madison

1. Greatest Common Divisor

Given integers *a* and *d*, with $d \neq 0$, if there is an integer λ such that $a = \lambda d$, then we say "*d* divides *a*" and write d|a. If in addition d|b, say $b = \mu d$, then for integers *u* and *v*,

 $ua+vb=u(\lambda d)+v(\mu d)=(u\lambda+v\mu)d,$

and we see that d|(ua+vb).

Given integers a and b with at least one of them nonzero, we say that d is their **greatest common divisor** if the following statements are both true:

- *d*|*a*, *d*|*b*.
- For all integers c, if c|a and c|b, then c|d.

In this case, we put d := gcd(a, b). Note that the gcd is unique.¹

Lemma 1 (Bézout). Given integers a and b not both zero,

 $d := \min\{ax + by : x \text{ and } y \text{ are integers and } ax + by > 0\}$

is the greatest common divisor of a and b.

Discussion. Let

$$D := \{ax + by : x \text{ and } y \text{ are integers and } ax + by > 0\}.$$
 (1)

Then *D* the set of all integer linear combinations of *a* and *b* that yield a positive result. The lemma says that the smallest element of this set is the greatest common divisor. For example, if a > 0 and b = 0, then

 $D = \{ax : x \text{ is an integer and } ax > 0\} = \{ax : x = 1, 2, ...\}.$

In this case, $\min D = a$, which is indeed gcd(a, 0).

¹ If d_1 and d_2 both have the above properties, then $d_1|d_2$ and $d_2|d_1$; i.e., $d_2 = \lambda d_1$ and $d_1 = \mu d_2$, which implies $d_2 = \lambda \mu d_2$, or $d_2(1 - \lambda \mu) = 0$. Since $d_2 \neq 0$, we must have $\lambda \mu = 1$. Hence, λ and μ have the same sign and their magnitudes must be one. But since $\lambda d_1 = d_2$ and d_1 and d_2 are both positive, $\lambda = 1$. Thus, $d_2 = d_1$.

Proof of the Bézout Lemma. We first point out that D in (1) is nonempty. To see this, observe that since either a or b is nonzero, we can take x or y to be ± 1 and the other zero so that ax + by is equal to either |a| or |b|. Since every nonempty set of positive integers has a smallest element,² $d := \min D$ is well defined. Let x and y be such that d = ax + by. To show that d divides a, we appeal to the division algorithm [2] to write

$$a = \lambda d + r, \quad 0 \le r < d.$$

If we can show r = 0, then it follows that d|a. Write

$$r = a - \lambda d = a - \lambda (ax + by) = a(1 - \lambda x) + b\lambda y_{z}$$

which is an integer linear combination of *a* and *b*. If r > 0, then $r \in D$. But then r < d contradicts *d* being the smallest element of *D*. Thus, r = 0 and d|a. A similar argument shows that d|b.

2. A Simple Application

Proposition 2. Let a and b be positive integers with gcd(a,b) = 1; i.e., a and b are **relatively prime**. If m is a positive integer such that $m_{\overline{b}}^{\underline{a}}$ is a positive integer, then m is a positive integer multiple of b. Conversely, if m is a positive integer multiple of b, then m is a positive integer and so is m(a/b).

Proof. The converse part is obvious. So assume that m is a positive integer such that m(a/b) = k for some positive integer k. Then ma = kb, or equivalently, b|ma. We claim that in fact b|m, which says that m is a multiple of b. To see this, we use the division algorithm to write

$$m = \lambda b + r, \quad 0 \le r < b. \tag{2}$$

Now, since gcd(a,b) = 1, there exist integers x and y such that

$$1 = ax + by$$

which implies

$$r = arx + bry$$

Using this in (2) shows that

$$m = \lambda b + arx + bry = (ar)x + b(\lambda + ry)$$
(3)

Next, we also have from (2) that

$$ma = a\lambda b + ar$$

Since b|ma and $b|(a\lambda b)$, we have b|ar. Now that *b* divides both terms on the right in (3), it follows that b|m.

² This is known as the well-ordering principle [3].

References

- Wikipedia contributors, "Bézout's idenity Wikipedia, The Free Encyclopedia," [Online]. Available: https://en.wikipedia.org/w/index.php?title=B%C3%A9zout%27s_ identity&oldid=969272376, accessed Oct. 3, 2020.
- [2] Wikipedia contributors, "Euclidean division Wikipedia, The Free Encyclopedia," [Online]. Available: https://en.wikipedia.org/w/index.php?title=Euclidean_division&oldid=981100122, accessed Oct. 3, 2020.
- [3] Wikipedia contributors, "Well-ordering principle Wikipedia, The Free Encyclopedia," [Online]. Available: https://en.wikipedia.org/w/index.php?title=Well-ordering_ principle&oldid=940753179, accessed Oct. 3, 2020.