The Bézout Lemma and an Application

John A. Gubner
Department of Electrical and Computer Engineering
University of Wisconsin-Madison

1. Greatest Common Divisor

Given integers a and d, with $d \neq 0$, if there is an integer λ such that $a=\lambda d$, then we say " d divides a " and write $d \mid a$. If in addition $d \mid b$, say $b=\mu d$, then for integers u and v,

$$
u a+v b=u(\lambda d)+v(\mu d)=(u \lambda+v \mu) d,
$$

and we see that $d \mid(u a+v b)$.
Given integers a and b with at least one of them nonzero, we say that d is their greatest common divisor if the following statements are both true:

- $d|a, d| b$.
- For all integers c, if $c \mid a$ and $c \mid b$, then $c \mid d$.

In this case, we put $d:=\operatorname{gcd}(a, b)$. Note that the gcd is unique ${ }^{1}$
Lemma 1 (Bézout). Given integers a and b not both zero,

$$
d:=\min \{a x+b y: x \text { and } y \text { are integers and } a x+b y>0\}
$$

is the greatest common divisor of a and b.
Discussion. Let

$$
\begin{equation*}
D:=\{a x+b y: x \text { and } y \text { are integers and } a x+b y>0\} . \tag{1}
\end{equation*}
$$

Then D the set of all integer linear combinations of a and b that yield a positive result. The lemma says that the smallest element of this set is the greatest common divisor. For example, if $a>0$ and $b=0$, then

$$
D=\{a x: x \text { is an integer and } a x>0\}=\{a x: x=1,2, \ldots\} .
$$

In this case, $\min D=a$, which is indeed $\operatorname{gcd}(a, 0)$.

[^0]Proof of the Bézout Lemma. We first point out that D in (1) is nonempty. To see this, observe that since either a or b is nonzero, we can take x or y to be ± 1 and the other zero so that $a x+b y$ is equal to either $|a|$ or $|b|$. Since every nonempty set of positive integers has a smallest element ${ }^{2} d:=\min D$ is well defined. Let x and y be such that $d=a x+b y$. To show that d divides a, we appeal to the division algorithm [2] to write

$$
a=\lambda d+r, \quad 0 \leq r<d
$$

If we can show $r=0$, then it follows that $d \mid a$. Write

$$
r=a-\lambda d=a-\lambda(a x+b y)=a(1-\lambda x)+b \lambda y
$$

which is an integer linear combination of a and b. If $r>0$, then $r \in D$. But then $r<d$ contradicts d being the smallest element of D. Thus, $r=0$ and $d \mid a$. A similar argument shows that $d \mid b$.

2. A Simple Application

Proposition 2. Let a and b be positive integers with $\operatorname{gcd}(a, b)=1$; i.e., a and b are relatively prime. If m is a positive integer such that $m \frac{a}{b}$ is a positive integer, then m is a positive integer multiple of b. Conversely, if m is a positive integer multiple of b, then m is a positive integer and so is $m(a / b)$.

Proof. The converse part is obvious. So assume that m is a positive integer such that $m(a / b)=k$ for some positive integer k. Then $m a=k b$, or equivalently, $b \mid m a$. We claim that in fact $b \mid m$, which says that m is a multiple of b. To see this, we use the division algorithm to write

$$
\begin{equation*}
m=\lambda b+r, \quad 0 \leq r<b \tag{2}
\end{equation*}
$$

Now, since $\operatorname{gcd}(a, b)=1$, there exist integers x and y such that

$$
1=a x+b y
$$

which implies

$$
r=a r x+b r y
$$

Using this in (2) shows that

$$
\begin{equation*}
m=\lambda b+a r x+b r y=(a r) x+b(\lambda+r y) \tag{3}
\end{equation*}
$$

Next, we also have from (2) that

$$
m a=a \lambda b+a r
$$

Since $b \mid m a$ and $b \mid(a \lambda b)$, we have $b \mid a r$. Now that b divides both terms on the right in (3), it follows that $b \mid m$.

[^1]
References

[1] Wikipedia contributors, "Bézout's idenity - Wikipedia, The Free Encyclopedia," [Online]. Available: https://en.wikipedia.org/w/index.php?title=B\�\�zout\'s_ identity\&oldid=969272376. accessed Oct. 3, 2020.
[2] Wikipedia contributors, "Euclidean division - Wikipedia, The Free Encyclopedia," [Online]. Available: https://en.wikipedia.org/w/index.php?title=Euclidean_division\& oldid=981100122 accessed Oct. 3, 2020.
[3] Wikipedia contributors, "Well-ordering principle - Wikipedia, The Free Encyclopedia," [Online]. Available: https://en.wikipedia.org/w/index.php?title=Well-ordering_ principle\&oldid=940753179 accessed Oct. 3, 2020.

[^0]: ${ }^{1}$ If d_{1} and d_{2} both have the above properties, then $d_{1} \mid d_{2}$ and $d_{2} \mid d_{1}$; i.e., $d_{2}=\lambda d_{1}$ and $d_{1}=\mu d_{2}$, which implies $d_{2}=\lambda \mu d_{2}$, or $d_{2}(1-\lambda \mu)=0$. Since $d_{2} \neq 0$, we must have $\lambda \mu=1$. Hence, λ and μ have the same sign and their magnitudes must be one. But since $\lambda d_{1}=d_{2}$ and d_{1} and d_{2} are both positive, $\lambda=1$. Thus, $d_{2}=d_{1}$.

[^1]: ${ }^{2}$ This is known as the well-ordering principle [3].

