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Block Matrix Formulas
John A. Gubner

Department of Electrical and Computer Engineering
University of Wisconsin–Madison

Abstract

We derive a number of formulas for block matrices, including the block matrix
inverse formulas, determinant formulas, psuedoinverse formulas, etc.

If you find this writeup useful, or if you find typos or mistakes, please let me know
at John.Gubner@wisc.edu

1. Preliminary Observations

Given a block matrix
Φ ≔

[
𝐴 𝐵

𝐶 𝐷

]
,

if 𝐷 is invertible, then the Schur complement of 𝐷 is

Σ ≔ 𝐴 − 𝐵𝐷−1𝐶.

It is easy to check that

Φ =

[
𝐼 𝐵𝐷−1

0 𝐼

] [
Σ 0
0 𝐷

] [
𝐼 0

𝐷−1𝐶 𝐼

]
. (1)

Then detΦ = detΣ det𝐷, and we see that given 𝐷 is invertible, Φ is invertible if and
only if Σ is invertible. When Φ is invertible, taking the inverse of (1) yields

Φ−1 =

[
𝐼 0

−𝐷−1𝐶 𝐼

] [
Σ−1 0
0 𝐷−1

] [
𝐼 −𝐵𝐷−1

0 𝐼

]
=

[
Σ−1 −Σ−1𝐵𝐷−1

− 𝐷−1𝐶Σ−1 𝐷−1𝐶Σ−1𝐵𝐷−1 + 𝐷−1

]
. (2)

Instead of assuming 𝐷 is invertible, suppose 𝐴 is invertible. The Schur comple-
ment of 𝐴 is

Θ ≔ 𝐷 − 𝐶𝐴−1𝐵,
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and
Φ =

[
𝐼 0

𝐶𝐴−1 𝐼

] [
𝐴 0
0 Θ

] [
𝐼 𝐴−1𝐵
0 𝐼

]
. (3)

Then detΦ = det 𝐴 detΘ, and we see that given 𝐴 is invertible, Φ is invertible if and
only if Θ is invertible. If Φ is invertible,

Φ−1 =

[
𝐼 −𝐴−1𝐵
0 𝐼

] [
𝐴−1 0
0 Θ−1

] [
𝐼 0

−𝐶𝐴−1 𝐼

]
=

[
𝐴−1 + 𝐴−1𝐵Θ−1𝐶𝐴−1 −𝐴−1𝐵Θ−1

− Θ−1𝐶𝐴−1 Θ−1

]
. (4)

2. Results

Using (1)–(4), there are several identities that can easily be found.

2.1. Determinant Formulas

First, comparing (1) and (3) yields

det
[
𝐴 𝐵

𝐶 𝐷

]
= det(𝐴) det(𝐷 − 𝐶𝐴−1𝐵) = det(𝐴 − 𝐵𝐷−1𝐶) det(𝐷). (5)

In particular, taking 𝐴 = 𝐼𝑛 and 𝐷 = 𝐼𝑘 yields

det(𝐼𝑘 − 𝐶𝐵) = det(𝐼𝑛 − 𝐵𝐶). (6)

2.2. Matrix Inversion Formulas

Next, comparing the upper-left blocks of (2) and (4), we see that

[𝐴 − 𝐵𝐷−1𝐶]−1 = 𝐴−1 + 𝐴−1𝐵[𝐷 − 𝐶𝐴−1𝐵]−1𝐶𝐴−1, (7)

which is known as the Sherman–Morrison–Woodbury formula or sometimes just
the Woodbury formula. The remaining corresponding blocks are also equal. For
example, combining the top row of (2) with the bottom row of (4), we obtain[

𝐴 𝐵

𝐶 𝐷

]−1
=

[
[𝐴 − 𝐵𝐷−1𝐶]−1 −[𝐴 − 𝐵𝐷−1𝐶]−1𝐵𝐷−1

− [𝐷 − 𝐶𝐴−1𝐵]−1𝐶𝐴−1 [𝐷 − 𝐶𝐴−1𝐵]−1

]
. (8)
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2.3. Pseudoinverse Formulas

A nice application of (8) is to the pseudoinverse of a 2 × 2 block matrix. Recall
that if 𝑀 is full rank, then its pseudoinverse is 𝑀† = (𝑀∗𝑀)−1𝑀∗, where 𝑀∗ is the
complex conjugate transpose of 𝑀 . Consider the case

𝑀 =

[
𝐺 𝐻

]
and 𝑀∗ =

[
𝐺∗

𝐻∗

]
.

Then
𝑀∗𝑀 =

[
𝐺∗𝐺 𝐺∗𝐻
𝐻∗𝐺 𝐻∗𝐻

]
,

and by (8),

(𝑀∗𝑀)−1 =

[
(𝐺∗𝑃⊥

𝐻
𝐺)−1 −(𝐺∗𝑃⊥

𝐻
𝐺)−1𝐺∗𝐻 (𝐻∗𝐻)−1

− (𝐻∗𝑃⊥
𝐺
𝐻)−1𝐻∗𝐺 (𝐺∗𝐺)−1 (𝐻∗𝑃⊥

𝐺
𝐻)−1

]
, (9)

where 𝑃⊥
𝐻
≔ 𝐼 − 𝐻 (𝐻∗𝐻)−1𝐻∗ and 𝑃⊥

𝐺
≔ 𝐼 − 𝐺 (𝐺∗𝐺)−1𝐺∗. It now easily follows

that

(𝑀∗𝑀)−1𝑀∗ =

[
(𝐺∗𝑃⊥

𝐻
𝐺)−1𝐺∗𝑃⊥

𝐻

(𝐻∗𝑃⊥
𝐺
𝐻)−1𝐻∗𝑃⊥

𝐺

]
=

[
(𝑃⊥

𝐻
𝐺)†

(𝑃⊥
𝐺
𝐻)†

]
. (10)

2.4. Positive Semidefinite Matrices

A matrix𝑈 is positive semidefinite if𝑈∗ = 𝑈 and 𝑥∗𝑈𝑥 ≥ 0 for all vectors 𝑥. In
this case, we use the notation 𝑈 ⪰ 0. If 𝑈 and 𝑉 are Hermitian, we write 𝑈 ⪰ 𝑉 if
𝑈 − 𝑉 is positive semidefinite. For real matrices, the condition 𝑈 = 𝑈∗ is equivalent
to𝑈 = 𝑈T, where𝑈T denotes the transpose of𝑈.

Suppose that Φ is real with ΦT = Φ. Then 𝐴 = 𝐴T, 𝐷 = 𝐷T, and 𝐶 = 𝐵T. Now
rewrite (1) as[

𝐴 − 𝐵𝐷−1𝐵T 0
0 𝐷

]
=

[
𝐼 −𝐵𝐷−1

0 𝐼

] [
𝐴 𝐵

𝐵T 𝐷

] [
𝐼 0

−𝐷−1𝐵T 𝐼

]
.

Suppose the center matrix on the right is known to be positive semidefinite. Then
since the matrices on either side are transposes of each other, it is easy to see that
the matrix on the left-hand side is also positive semidefinite. It then follows that
𝐴 − 𝐵𝐷−1𝐵T is positive semidefinite; in symbols, 𝐴 ⪰ 𝐵𝐷−1𝐵T.

3



BlockMatrixFormulas.tex 7/7/2015, 7/24/2015, November 23, 2024

2.4.1. Properties of the Schur Complement

A matrix 𝑈 is positive definite if in addition to being positive semidefinite,
𝑥∗𝑈𝑥 > 0 for all 𝑥 ≠ 0. Such a matrix is nonsingular and therefore invertible. We
now assume that 𝐴 and 𝐷 are positive definite and that 𝐶 = 𝐵∗. Then we can always
write

Σ = 𝐴 − 𝐵𝐷−1𝐵∗ = 𝐴 − 𝐴1/2𝐾𝐴1/2 = 𝐴1/2 (𝐼 − 𝐾)𝐴1/2,

where
𝐾 = 𝐴−1/2𝐵𝐷−1𝐵∗𝐴−1/2.

It follows that detΣ = det 𝐴 det(𝐼 − 𝐾), and so Σ is singular if and only if 𝐼 − 𝐾
is singular. The assumption 𝐷 ≻ 0 implies 𝐷−1 ≻ 0, and so 𝐾 ⪰ 0. Hence, Σ is
positive semidefinite if and only if 𝐼 − 𝐾 is positive semidefinite, in which case the
eigenvalues of 𝐼 − 𝐾 are nonnegative, which implies the eigenvalues of 𝐾 are less
than or equal to one. Since 𝐾 ⪰ 0 as well, the eigenvalues of 𝐾 lie between zero and
one.

We next show that 𝐾 = 0 if and only if 𝐵 = 0. If 𝐵 = 0, then obviously 𝐾 = 0.
Conversely, suppose 𝐾 = 0. Write 𝐾 = 𝐽𝐽∗, where 𝐽 ≔ 𝐴−1/2𝐵𝐷−1/2. Then 𝐾 = 0
implies 0 = tr𝐾 = tr(𝐽𝐽∗) =

∑
𝑖, 𝑗 |𝐽𝑖, 𝑗 |2, which implies 𝐽 = 0, and it follows that

𝐵 = 0.
We can also show that if 𝐾 is singular, then so is 𝐵∗. Suppose 𝑥 ≠ 0 and 𝐾𝑥 =

𝐽𝐽∗𝑥 = 0. Since ker 𝐽𝐽∗ = ker 𝐽∗, we have 𝑥 ∈ ker 𝐽∗. So 𝐷−1/2𝐵∗𝐴−1/2𝑥 = 0. It
follows that 𝐵∗𝐴−1/2𝑥 = 0, which implies 𝐴−1/2𝑥 ∈ ker 𝐵∗. Since 𝑥 ≠ 0, 𝐴−1/2𝑥 ≠ 0.

2.4.2. Upper-Left Block Submatrices

Given a 2 × 2 block matrix 𝑈, we denote its upper-left block by {𝑈}ULB. For the
matrix Φ defined earlier, {Φ}ULB = 𝐴. We show below that if Φ = Φ∗, then

{𝑈∗Φ−1𝑈}ULB ⪰ {𝑈∗}ULB{Φ}−1
ULB{𝑈}ULB.

More specifically, if

𝑈 ≔

[
𝑃 𝑄

𝑅 𝑆

]
,

then
{𝑈∗Φ−1𝑈}ULB ⪰ 𝑃∗𝐴−1𝑃.

To derive the result, we first use (4) to compute the left-hand block column of Φ−1𝑈.
We get [

{𝐴−1 + 𝐴−1𝐵Θ−1𝐶𝐴−1}𝑃 − 𝐴−1𝐵Θ−1𝑅

− Θ−1𝐶𝐴−1𝑃 + Θ−1𝑅

]
.
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It follows that

{𝑈∗Φ−1𝑈}ULB =
[
𝑃∗ 𝑅∗ ] [ {𝐴−1 + 𝐴−1𝐵Θ−1𝐶𝐴−1}𝑃 − 𝐴−1𝐵Θ−1𝑅

− Θ−1𝐶𝐴−1𝑃 + Θ−1𝑅

]
= 𝑃∗𝐴−1𝑃 + 𝑃∗𝐴−1𝐵Θ−1𝐶𝐴−1𝑃

− 𝑃∗𝐴−1𝐵Θ−1𝑅 − 𝑅Θ−1𝐶𝐴−1𝑃 + 𝑅∗Θ−1𝑅

= 𝑃∗𝐴−1𝑃 + (𝐵∗𝐴−1𝑃 − 𝑅)∗Θ−1 (𝐶𝐴−1𝑃 − 𝑅).

Since Φ = Φ∗, we have 𝐶 = 𝐵∗, it follows that {𝑈∗Φ−1𝑈}ULB ⪰ 𝑃∗𝐴−1𝑃.
Remarks. (𝑖) The above display does not depend on 𝑄 or 𝑆.
(𝑖𝑖) The only requirement on 𝑈 is that its size be such that the required matrix

multiplications are defined. The number of columns in𝑄 and 𝑆 must be the same, but
this number is arbitrary, and could be zero, in which case 𝑈 is a 2 × 1 block matrix.
In particular, there is no requirement that𝑈 be a square matrix.
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