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An Introduction to Certificates of Deposit, Bonds,
Yield to Maturity, Accrued Interest, and Duration

John A. Gubner
Department of Electrical and Computer Engineering

University of Wisconsin–Madison

Abstract

A brief introduction is given to compound interest, certificates of deposit, and
bonds. The focus is on determining a fair price, yield to maturity, accrued interest,
and duration. MATLAB code is given to compute the accrued interest with the 30/360
US method, which is used for US corporate bonds and many US agency bonds.

If you find this writeup useful, or if you find typos or mistakes, please let me
know at John.Gubner@wisc.edu
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1. Compound Interest

Recall that if you invest principal A0 at annual interest rate r (as a decimal1)
compounded m times per year for y years, then the amount of money you will have
after y years is

A(y) = A0(1+ r/m)my.

In this formula, m is called the compounding frequency and has units of years−1.
The reciprocal 1/m is called the compounding period and has units of years. Since
y is measured in years, the product my has no units. The annual interest rate r also
has units of years−1 so that the quotient r/m has no units.

To compute the amount of money you will have at the time you receive the kth
interest payment, set y = k/m for k = 1,2, . . . . This results in

A(k/m) = A0(1+ r/m)k.

For example, if interest is compounded quarterly, then when you receive the first
interest payment, after three months (1/4 of a year), you will have

A(1/4) = A0(1+ r/4).

After six months, you will have

A(2/4) = A0(1+ r/4)2.

After nine months, you will have

A(3/4) = A0(1+ r/4)3.

Since interest is paid at times which are multiples of 1/m, if y is a time between
payment dates, say

k
m
≤ y <

k+1
m

,

then we can express y in the form

y =
k+ρ

m
, 0≤ ρ < 1,

where ρ is the fraction of a compounding period that has passed since the kth interest
payment. With this notation, the amount of money you will have at time (k+ρ)/m
is

A
(

k+ρ

m

)
= A0(1+ r/m)k+ρ .

1 For example, a 5% annual rate would use r = 0.05.
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1.1. Daily Compounding

For daily compounding, it is more convenient to measure time in days (see [6]
for how to do this). After d days you will have

A(d) = A0(1+ r/365)d .

Interest earned using this formula is called exact interest to distinguish it from ordi-
nary interest which arises using the banker’s rule,

A(d) = A0(1+ r/360)d .

When bankers talk about interest, they mean ordinary interest unless explicitly stated
otherwise.

2. Present Value

Suppose that at some time y= (k+ρ)/m in the future, you will receive an amount
of money A(y). How much is it worth today? The answer is called the present value,
and it is given by

PV =

A
(

k+ρ

m

)
(1+ r/m)k+ρ

.

Of course, when A((k+ρ)/m) is given by A0(1+r/m)k+ρ the present value is simply
A0.

3. Certificates of Deposit

Consider a bank certificate of deposit (CD) in which you invest principal A0 at
annual interest rate r paid m times a year. Rather than take the interest payments and
spend them, you choose to have your interest added to your CD balance so that you
get the benefit of compounding. Suppose that your CD will mature after n/m years
so that there will be n compoundings. At maturity your CD will be worth

A0(1+ r/m)n. (1)

However, if you want the current CD balance before maturity, you will have to pay a
penalty.

Now suppose that you invest in your CD today at 11 am, and as your turn to leave
the bank, they announce that starting at noon, new CDs will earn annual interest rate
rnew. You return to the bank at noon and strike up a conversation with a potential new
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CD customer waiting in line. You ask her how much she will pay you in exchange
for your CD that pays the old interest rate r. If rnew > r, she will pay you less than
A0, since otherwise she can just buy a new CD directly from the bank. But what is
the fair price you should ask for your CD? A little thought suggests that the fair price
is p(rnew), where p(rnew) is chosen so that if she invested p(rnew) in a new bank CD
at the new rate rnew, the value at maturity would equal that of your CD; i.e., p(rnew)
should solve

p(rnew)(1+ rnew/m)n = A0(1+ r/m)n. (2)

We conclude that the price should be

p(rnew) =
A0(1+ r/m)n

(1+ rnew/m)n .

As expected, if rnew > r, p(rnew) < A0, and if rnew < r, then p(rnew) > A0. This
illustrates the fact that CD prices and interest rates move in opposite directions.

As rnew ranges over the interval (−m,∞), the price p(rnew) decreases continu-
ously from ∞ to 0. Hence, every positive price corresponds to a unique value of rnew.
This means that if we know the maturity value of the CD, the number of compound-
ings n, and the current price, say p̂, we can solve the equation for the current CD
interest rate rnew; i.e.,

rnew = m
[(maturity value

p̂

)1/n
−1
]
.

4. Bond Prices

Consider a bond with face value F (also called the maturity value or par value)
and annual interest rate r (called the coupon, coupon rate or nominal yield), with
coupons paid m times a year. The amount of each interest payment, or coupon pay-
ment, is

C := Fr/m. (3)

4.1. A Special Case

Although it is not possible in practice, assume that you will deposit each coupon
payment in a savings account that pays annual rate rnew compounded m times per
year.2 How much money will you have if the bond matures upon receipt of the nth

2 It would make more sense to assume that each coupon payment is invested in a bank CD at rate rnew
that matures when the bond matures. Since successive coupon payments will be invested for shorter and
shorter times, the successive values of rnew should decrease. However, since we keep rnew constant in our
analysis, it is simpler to say that the coupon payments are deposited in a savings account.
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coupon payment? When the bond matures, you get the face value F plus you have
your savings account, whose value is

C(1+ rnew/m)n−1 +C(1+ rnew/m)n−2 + · · ·+C(1+ rnew/m)0,

where the first term is the result of depositing the first coupon payment in your sav-
ings account for the remaining n−1 time compounding periods, and the last term is
simply the final coupon payment, which spends zero time in your savings account.
Hence, at maturity, you have3

A = F +C(1+ rnew/m)n−1 +C(1+ rnew/m)n−2 + · · ·+C(1+ rnew/m)0

= F +C
n−1

∑
`=0

(1+ rnew/m)`. (4)

If the process just described starts exactly n compounding periods prior to the matu-
rity date, what is a fair price for the bond? Because of our savings account assump-
tion, a potential buyer could either invest p(rnew) in a savings account at rate rnew
compounded m times per year, leaving the interest in the bank to compound, or she
could buy the bond for p(rnew) and deposit the coupon payments in a savings account
at rate rnew compounded m times per year. Hence, we must have (cf. (2))

p(rnew)(1+ rnew/m)n = A, (5)

or

p(rnew) =
A

(1+ rnew/m)n =
F

(1+ rnew/m)n +C
n−1

∑
`=0

(1+ rnew/m)`

(1+ rnew/m)n

=
F

(1+ rnew/m)n +C
n−1

∑
`=0

1
(1+ rnew/m)n−` . (6)

This shows that bond prices and interest rates move in opposite directions.

Example 1. Consider two bonds with the same face value F . The first bond
was issued five years ago with coupon rate r to mature in ten years; hence this bond
matures five years from today. The second bond is being issued today with rate rnew,
matures in five years, and sells at par. Use (6) to find today’s price of the first bond if
F = $100, r = 2.5%, and rnew = 2.0%.

Solution. We use the following MATLAB code to compute (6).

3 The proof of Proposition 2 shows that if rnew = r, then (4) simplifies to A = F(1+ r/m)n, which is
the CD maturity value (1) with A0 replaced by F .
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F = 100;
r = 2.5/100;
rnew = 2.0/100;
m = 2;
n = 5*m; % five years = 10 coupon payments
C = F*r/m;
theta = 1 + rnew/m;
numeratorvec = [ repmat(C,1,n) F ];
powers = [ 1:n n ];
price = sum(numeratorvec./theta.ˆpowers)

We find that the price rounds to $102.37.

Proposition 2. If rnew is equal to the coupon rate r, then the price (6) is equal to
the bond face value F.

Proof. First consider the case rnew = r = 0. Then C = Fr/m = 0 on account of
(3), and then (6) reduces to p(0) = F .

It remains to consider the case rnew = r 6= 0. Put θ := 1+r/m so that (4) becomes

A = F +C
n−1

∑
`=0

θ
`.

By the geometric series,

n−1

∑
`=0

θ
` =

1−θ n

1−θ
, θ 6= 1.

Then use the fact that 1−θ =−r/m. Since C = Fr/m, we find that

A = F +
Fr
m
· 1−θ n

−r/m
= F +F(θ n−1) = Fθ

n.

We can now write (6) as p(r)θ n = Fθ n and the proposition follows.

Example 3. In the MATLAB code used to solve Example 1, if you change the
third line to rnew = r; what value do you obtain for price?

4.2. The General Case

Let us repeat the analysis leading to (6), but assume that the starting time is
midway between coupon payment dates, say a fraction ρ of the compounding period
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since the most recent coupon payment, and that there n payments remaining. Then
the formula (4) for A is the same, but (5) becomes

p(rnew)(1+ rnew/m)n−ρ = A

because the time to maturity is no longer n, but is a little shorter by the fraction ρ of
a compounding period. It now follows that

p(rnew) =
F

(1+ rnew/m)n−ρ
+C

n−1

∑
`=0

(1+ rnew/m)`

(1+ rnew/m)n−ρ

=
F

(1+ rnew/m)n−ρ
+C

n−1

∑
`=0

1
(1+ rnew/m)n−`−ρ

=
F

(1+ rnew/m)n−ρ
+C

n

∑
k=1

1
(1+ rnew/m)k−ρ

. (7)

Even in this slightly more general situation, bond prices and interest rates still
move in opposite directions.

Remark. In the next section, we introduce the yield to maturity, which is defined
as the solution of (7) for rnew when the left-hand side is given. Based on our derivation
of (7), it appears that the yield to maturity depends on the assumption that the coupon
payments are reinvested at rate rnew. However, consider the following view suggested
by [5]. The first term on the right in (7) is the present value of the face value F
received at maturity. The fraction C/(1+ rnew/m)k−ρ is the present value of the kth
coupon payment; i.e., we can write (7) as

PV = PVF +
n

∑
k=1

PVCk .

Now there is no assumption of reinvesting the coupon payments at rate rnew.

5. Yield to Maturity — Part 1

Suppose I own the bond described in the previous section, and I make you the
following offer. If you pay me p̂ today, then I will give you my remaining interest
payments C when I receive them, and I will give you the face value F at maturity. In
this offer, there is no mention of an interest rate, so instead of (7), we consider the
equation

p̂ =
F

(1+λ/m)n−ρ
+C

n

∑
k=1

1
(1+λ/m)k−ρ

, (8)
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and try to solve it for λ . The solution is called the yield to maturity. Observe that the
right-hand side (RHS) of the equation as a function of λ is continuous and strictly
decreasing on (−m,∞). Since the RHS tends to infinity as λ ↘ −m and the RHS
tends to zero as λ ↗∞, the equation can be solved for any positive, finite value of p̂.

Example 4. In Example 1, we showed that the price of the first bond was $102.37.
Use (8) with ρ = 0 to obtain the yield to maturity.

Solution. Using the values of m, numeratorvec, and powers from the solu-
tion of Example 1, we add the following MATLAB code.

phat = 102.37;
v = @(lambda)sum(numeratorvec./(1+lambda/m).ˆpowers);
g = @(lambda)phat-v(lambda);
YTM = fzero(g,0.5) % Solve phat = v(lambda)

What do you expect YTM to be?

5.1. Interpretation

Let λ denote the solution of (8), and multiply (8) by (1 + λ/m)n−ρ ; i.e., we
reverse the steps that led to (7) but replace p(rnew) with p̂ and rnew with λ . Then

p̂(1+λ/m)n−ρ = F +C
n−1

∑
`=0

(1+λ/m)`.

The left-hand side is equal to what you would have if you could invest p̂ in a CD
paying rate λ until the bond matures. The right-hand side is equal to what you would
have if you bought the bond and could invest the coupon payments at rate λ until the
bond matures.

6. Buying Bonds

6.1. The Price

When bonds are offered for sale, the price is quoted as a percentage of the face
value F that you want to buy. For example, the price might be P% = 102.763, meaning
that you pay 102.763% of the face value.4 If you want to buy this bond with a face
value F = $15,000, it will cost you

F× P%

100
= $15,000× 102.763

100
= $15,414.45.

4 Equivalently, P% is the price of a bond with a $100 face value.
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In this case, you pay a premium of $414.45, which is 2.763% of the face value.
Similarly, if the bond price is P% = 98.425, the cost of a $15,000 bond would be

F× P%

100
= $15,000× 98.425

100
= $14,763.75.

In this case, you obtain the bond at a discount of 100−98.425 = 1.575%.

6.2. The Accrued Interest

If you buy a bond between coupon payments dates, when you get your first
coupon payment, only a fraction of it really belongs to you. For this reason, at the
time you buy the bond, you pay a total of the bond price plus a portion of your first
coupon payment. That portion is called accrued interest, and is denoted by AI. It is
computed by solving the equation

AI
C

= ρ. (9)

Equivalently,
AI =Cρ.

Hence, on account of (3), the accrued interest AI is proportional to the face value F .

7. Yield to Maturity — Part 2

From the discussion in Section 6, we should replace p̂ in (8) with

F
P%

100
+AI,

which we call the total cost. This results in the formula

F
P%

100
+AI =

F
(1+λ/m)n−ρ

+C
n

∑
k=1

1
(1+λ/m)k−ρ

.

Dividing by F results in

P%

100
+

AI
F

=
1

(1+λ/m)n−ρ
+

C
F

n

∑
k=1

1
(1+λ/m)k−ρ

.

Substituting C = Fr/m from (3) and AI =Cρ from (9) yields

P%

100
+

r
m

ρ =
1

(1+λ/m)n−ρ
+

r
m

n

∑
k=1

1
(1+λ/m)k−ρ

. (10)
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The value of λ that solves this equation is the yield to maturity, which, as we would
expect, does not depend on the face value F of the bond. We call (10) the yield to
maturity equation. The left-hand side is the total cost per dollar of face value.

Caution. Of all the parameters in the yield to maturity equation, the fraction of
a compounding period ρ is the most difficult to determine, as explained in Section 9.
Fortunately, for a bond with a specific face value F , the seller will provide P%, r, m,
and AI. Then you can compute C using (3) and then ρ using (9).

8. Sensitivity and Duration

Let ϕ(λ ) denote the right-hand side of (10). This function gives the total cost per
dollar of face value as a function of the yield to maturity. How much does the cost
change if the yield changes from λ to λ +∆λ? For small ∆λ ,

ϕ(λ +∆λ )−ϕ(λ )≈ ϕ
′(λ )∆λ .

Since ϕ is a decreasing function (cf. the discussion below (8)), its derivative is nega-
tive. Hence if the yield increases, the cost decreases, and vice verse. What we really
want, however, is the percentage change in cost,

ϕ(λ +∆λ )−ϕ(λ )

ϕ(λ )
·100%≈ ϕ ′(λ )

ϕ(λ )
∆λ ·100%.

To make further progress, we need to compute ϕ ′(λ ). To this end, put

ψt(λ ) :=
1

(1+λ/m)t ,

where we suppress the dependence on m. With this notation,

ϕ(λ ) = (r/m)
n

∑
k=1

ψk−ρ(λ )+ψn−ρ(λ ).

Now observe that
ψ
′
t (λ ) =−

t
m(1+λ/m)

ψt(λ ).

It follows that

ϕ
′(λ ) =− 1

1+λ/m

[
(r/m)

n

∑
k=1

k−ρ

m
ψk−ρ(λ )+

n−ρ

m
ψn−ρ(λ )

]
.
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Notice that the fractions (k−ρ)/m have units of years, since m has units of years−1.
Hence, ϕ ′(λ ) has units of years. The sensitivity is defined as

S(λ ) :=
ϕ ′(λ )

ϕ(λ )
=− 1

1+λ/m
·
(r/m)

n

∑
k=1

k−ρ

m
ψk−ρ(λ )+

n−ρ

m
ψn−ρ(λ )

(r/m)
n

∑
k=1

ψk−ρ(λ )+ψn−ρ(λ )

,

and has units of years. The Macaulay duration, or simply the duration, is

D(λ ) :=−
(r/m)

n

∑
k=1

k−ρ

m
ψk−ρ(λ )+

n−ρ

m
ψn−ρ(λ )

(r/m)
n

∑
k=1

ψk−ρ(λ )+ψn−ρ(λ )

,

and also has units of years, since 1+λ/m has no units. Clearly, S(λ ) = D(λ )/(1+
λ/m). On account of this, the sensitivity is usually called the modified duration.

To put the foregoing all together, suppose the current total cost per dollar of face
value is ϕ(λ ), where λ is the current yield to maturity. If the yield changes to λ +∆λ ,
then the percentage cost change will approximately be

S(λ )∆λ ·100% =
D(λ )

1+λ/m
∆λ ·100%,

where

D(λ ) =−
(r/m)

n

∑
k=1

(k−ρ)/m
(1+λ/m)k−ρ

+
(n−ρ)/m

(1+λ/m)n−ρ

ϕ(λ )
.

Example 5. Recall the first bond in Example 1 with coupon rate r = 2.5% and
currently priced at $102.37. Letting λ = rnew = 2.0% denote the current yield, find
the duration, sensitivity, and approximate price change if yields increase back to
r = 2.5%.

Solution. Using the values of m, numeratorvec, and powers from the solu-
tion of Example 1 and the function v from Example 4, we can add the following code
to compute the duration, sensitivity, and approximate price change (we take ρ = 0).5

5 To understand how the code relates to the formula for D(λ ), keep in mind that numeratorvec,
which also occurs in the definition of v, contains the factor F . Hence, in the code statement that computes
D, the common factor F cancels.
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num2 = numeratorvec.*[ 1:n n ]/m;
lambda = rnew;
Dlambda = r - rnew;
D = -sum(num2./(1+lambda/m).ˆpowers)/v(lambda)
S = D/(1+lambda/m)
S*Dlambda*100

We find that the approximate price change is −2.34%; i.e., the price would drop by
0.0234 ·$102.37 = $2.40, and so the new price would be approximately $99.97. Of
course the true new price will be the face value of $100 since the coupon rate is 2.5%.
In other words, the true price change would be $2.37 rather than the approximate
$2.40.

9. Day by Day, or Thirty Days Hath September

Since it was challenging to find the number of days between two dates before
computers were commonplace, the following 30/360 US method continues to be
used to compute accrued interest on US corporate bonds and many US agency bonds
[8]. If the previous coupon payment was on M1/D1/Y 1, and the settlement date is
M2/D2/Y 2 (and neither month is February; to handle this case, see [8]), then the
number of days between the previous coupon payment date and the settlement date
is approximated by the following MATLAB code.6

if D2==31 && (D1>=30)
D2 = 30;

end
if D1==31

D1 = 30;
end
ApproxNumDays = 360*(Y2-Y1)+30*(M2-M1)+(D2-D1);

The method also approximates the number of days in a year by 360, and the ratio

ApproxNumDays

360
,

is used to replace ρ/m in all of the above formulas; i.e.,

ρ =
ApproxNumDays

360
m.

6 Notice that M2-M1 or D2-D1 may be negative.
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